Application of fire Suppression Optimisation in Allocating Resources (SOAR)

M.P Plucinski¹, J.S Gould¹, G.J McCarthy²
¹Ensis -Forest Biosecurity and Protection, CSIRO, Canberra
²School of Forest and Ecosystem Science, Univ. of Melbourne, Orbost, Victoria

Outline

- Background
 - Aerial suppression
 - Decision support systems
- Suppression research flow
- Inputs
- Research activities
 - Operational data collection
 - Experimental data collection
 - Suppression analysis tools
- Outputs
- Outcomes
Aerial Suppression
more effectively and efficiently

• Bushfires
 – New paradigm carries increased responsibilities and heightened expectations. It almost certainly will increase public expectations of aerial fire fighting (*fire authorities*) performance and accountability.
 – Increasing cost of suppressing fires is a pressing concern, requiring careful selection of suppression strategies and efficient application of tactics.
 – Bushfire agencies operate in an environment characterised by great variation in fire activity and its consequences.
 – We need to develop a performance-base system tailored to a local, state and national aerial fire fighting program

Aerial Suppression
more effectively and efficiently

– **Effectiveness**- a physical measure of productivity for a desired outcome
– **Efficiency**- getting the most out a given budget
– We need to define target outcomes and worst case outcomes for each suppression strategy considered:
 • For each outcome we need to:
 – Estimate final fire size
 – Resource damages
 – Suppression costs
 – Probability of that outcome occurring

– **BUT**
 • Logically structured decision analysis protocols are only as good as their inputs and there are uncertainties
 • Expert judgment- subjective assessments on the probability of success
Decision-support systems
for evaluating alternative suppression strategies

- Analytical requirements
 - Identify criteria for evaluating suppression alternatives
 - Develop suppression alternatives
 - Analyze suppression alternatives by evaluating criteria and selecting the alternative that:
 1. Best provides for fire fighter and public safety
 2. Minimises the sum of suppression costs and resource damages
 3. Has an acceptable expected probability of success or failure.
Inputs

- Fire Environment
 - Weather
 - Fuel
 - Topography
- Management Environment
 - eg: land tenure; bush/urban interface; fuel management
- Suppression Resources
 - eg: aircraft; tankers; machinery; ground crews
- Resource Values
 - eg: conservation; primary production; community assets; cultural & heritage values
- Fire History
 - History of ignition and major fires
 - spatial and temporal

Research Activities

- Operational data:
 - Collected on fire ground
- Experimental data
 - Selected conditions, controlled parameters
- Simulation model
 - Structured assessment of the outcomes and costs associated with alternative budgets and suppression resource mixes.
Operational data collection

Collected by operational personnel

- Potentially collect a large amount of data
- Collect data from all states
- Qualitative data (limited application)
 - Limited fuels and fire behaviour information
- Observer bias Two survey forms distributed to fire agencies:
 - Air Attack Supervisor report
 - Suppression operation report
- Supported by supplementary information
 - Maps
 - Reports
 - Photos

Operational data collection

Collected by researchers

- Closely observe and monitor drop zones
 - During fire
 - On ground observations
 - Observations from aircraft
 - Post fire
- Logistical problems
 - Notification
 - Travel
 - Safe access
Operational data collection

Preliminary trends (2004/05 season data)

- First attack is likely to be successful if:
 - Few fuel layers involved in fire (e.g., fire in litter, not shrubs)
 - Quick response (first suppression underway <2.5 hours after detection)
 - Low flame height (≤1m)
 - Low - moderate wind speed (<25 km/h)

- More significant than FDI – due to some fires that burnt under high winds during low drought factors (high elevated fuels)

Data collection

Experimental data collection

- Target conditions
- Comprehensive site assessment
- Detailed & accurate data
- Small amount of high quality data
- Cost & time for preparation
- Dependant on weather and resource availability
- Limited sites & opportunities
Experimental data collection

2005 Stubble fire suppression experiment Tasmania

- **Aim:**
 - determine the effects of suppression drops on fire behaviour in stubble fuels
 - develop a field method for further experiments
- **Site:** Uni of Tasmania farm
 - barley stubble (3 ½ t/ha)
- **Medium helicopter (Bell 212):**
 - bellytank & bucket
- **Components:**
 - Drop pattern tests
 - Determine suppressant ground distribution
 - Fire suppression experiments
 - Single drop
 - Multiple drop

Experimental data collection

Tasmanian experiment 2005

- Helicopter tested works well in moderate conditions, light fuels (3 ½ t/ha), with no canopy
 - Water just as effective as foam in these conditions
 - Unlikely to deploy helicopter in these conditions
- Streamlined experimental methodology
 - Evaluation in heavier fuels and elevated fire danger
Experimental data collection

Future experiments

- **Possible future experimental work**
 - Sydney Bioregion
 - In conjunction with other fire experiments (fire behaviour, ecology, smoke, remote sensing)
 - 2006/07 season
 - Type 1 & 2 helicopters
 - Different fuels
 - South Western Australia
 - Single engine air tankers
 - Different suppressant types

Suppression analysis tools

Simulation models

- **SOAR** - Suppression Optimisation in Allocating Resources
- Structured assessment of resourcing alternatives - resource mixes/locations
 - Effectiveness - productivity
 - Efficiency - cost effectiveness
- Test optimal resources for changed fire patterns
- Computer based decision support systems to evaluate suppression strategies under different scenarios
Fire suppression scenarios

• **Fire behaviour**
 - Location
 - Fuel type
 - Current and future fire behaviour/ fire weather
 - Fire load (number of fires)
 - Size
 - Fire growth, perimeter

• **Suppression resources**
 - Dispatch rule
 - Type- tankers, crew, aircraft, dozers, etc
 - Availability
 - Constraints
 - Travel time
 - Suppressant type
 - Production rates
 - Cost- standby / operating

Suppression effectiveness

Illustration of suppression effectiveness

- Need to predict fire behaviour in complex environment,
- Ability to model productivity and effectiveness of suppression resources,
- Provide assessments of the probability of fire containment for varied fire size, fire danger ratings, fire intensity.
Outputs

- Resource Use Guidelines
 - Define suitability and limits of effectiveness of resource types under different conditions
- Cost effectiveness
 - Optimise base locations and resource mixes, cost effectiveness analysis of different resourcing strategies

Outcomes

- Optimal resource selection, placement and deployment
- Maximise fire fighter and public safety
- Minimise the sum of suppression costs and fire damage
- Acceptable probabilities of success and failure
Project A3. Suppression Research Flow

Inputs
- Fire Environment
 - Weather
 - Fuel
 - Topography
- Management Environment
 - Land Tenure
 - Bush/Urban Interface
 - Fuel Management
- Suppression Resources
 - Aircraft
 - Tankers
 - Machines
 - Ground crews
 - Volunteers
- Resource Values
 - Conservation
 - Primary production
 - Community assets
 - Cultural & Heritage
 - Fire History

Research Activities
- Operational data
 - Resource effectiveness
 - Line building capacity
 - Response times & types
 - Expert judgment
- Simulation model
 - Structured assessment of the outcomes and costs associated with alternative budgets and suppression resource mixes.
- Experimental data
 - Drop coverage levels
 - Holding times
 - Suppressant evaluation
 - Fire behaviour

Outputs
- Resource Use Guidelines
 - Define suitability and limits of effectiveness of resource types under different conditions
- Cost effectiveness
 - Optimise base locations and resource mixes, cost effectiveness analysis of different resourcing strategies

Outcomes
- Optimal resource selection, placement and deployment
- Maximise fire fighter and public safety
- Minimise the sum of suppression costs and fire damage
- Acceptable probabilities of success and failure