Introduction
The dry sclerophyll forests of south-eastern Australia are among the most fire-prone forest communities in the world. Prescribed burns are commonly used in these forests to reduce future fire risk in order to provide protection to people and assets.

There has been considerable debate over the ecological impacts of frequent prescribed burning however few data are available for dry sclerophyll forests. We examined the factors which influence spatial variability of repeated low-intensity fires under two burning regimes for a 17 year period from 1988 to 2005 in the Eden Burning Study Area (EBSA).

Methods
The study was conducted in the EBSA which is located in the Yambulla State Forest, 29km south west of Eden, New South Wales. The EBSA is comprised of 18 experimental coupes in a randomized block design (Figure 1).

Results
- Fires burn in a patchy manner on both the coupe and plot scale (see Figures 2 and 3 below)
- Moisture affects the extent of fire at both the coupe (aspect) and plot scale (distance from stream).
- Recent fire history (i.e. time since fire and coverage of the last fire) influences fire behaviour at coupe and plot scale.
- Ridge sites are unlikely to burn within 5 years of a fire and gully sites are unlikely to burn within 10 years (Figure 4).

Discussion
The results confirm anecdotal reports that prescribed burning in dry sclerophyll forests is patchy, and quantify the degree of patchiness at both the site and the coupe scale. The heterogeneity of these fires is likely to minimize the ecological impacts. Unburnt areas provide refuges for fire sensitive species, while colonizing species are able to exploit the newly burnt areas. Gullies provides a longer term refuge site, as they are less likely to burn over longer time periods regardless of management intent. These results suggest that the ecological impacts of high frequency, low intensity fires are likely to be far lower than is often predicted based on assumptions of homogeneous landscapes and uniform burning. The results of this study will be used in combination with empirical vegetation response data to further investigate and test this conclusion.