

PROGRAM A3.1 Evaluation of Aerial Suppression Techniques and Guidelines

\rightarrow

Factors influencing the success of initial attack of bushfires in Australia using aircraft

M.P. Plucinski, J.S. Gould

Bushfire Dynamics and Applications, CSIRO Sustainable Ecosystems, Canberra, ACT

G.J. McCarthy

School of Forest and Ecosystems Science, University of Melbourne, Orbost, Vic

J.J. Hollis

Department of Environment and Conservation, Manjimup WA

Bepartment of Environment and Conservation

© BUSHFIRE CRC LTD 200

Background

- Aerial suppression is most effective and efficient during initial attack
- Preliminary model predicting the probability of fire containment published in 2007
 - Limited data set and range (n=76)
- Project has continued since then and now has a much greater data set (513 fires) and better data range

Available at: www.bushfirecrc.com

Methods

- Survey forms sent out to personnel involved in operations for fires that used aircraft during IA
 - weather, terrain, fuel, timing, fire area etc.
- Initial attack success
 - Containment in <8 hours
 - Binary data (success/ failure)
 - Modelled using logistic regression probability of success
- Data divided into two vegetation groups
 - FFDI forest, woodland, heath, scrub, plantations etc.
 - GFDI grass dominated

Results - Forest FDI fuel types

406 Fires from Forest FDI fuel types covering a representative range of conditions

Vegetation

- 68% forest/ woodland
- 6% pine plantations
- 18% scrub
- 8% heath
- FFDI: 1–107
 - Wind 0-67km/h/ Temp 12-43 $^{\circ}$ / RH 5-94%
- Location
 - 12% within 1km of urban interface
 - 19% remote (no/ limited ground access)
 - 69% general rural locations

Results - Forest FDI fuel types

Significant factors for inclusion in a model:

- Time from detection to aircraft IA (hours)
- Wind speed (km/h)

- Near Surface Fuel Hazard Score
- Time from detection to ground IA (hours)
- Fire area at IA (ha)
 - Details of model in proceedings

Results - Forest FDI fuel types

 \rightarrow

• New model is similar in structure to the preliminary model

	Preliminary	New
Response timing	Aircraft	Air & ground
Weather	FFDI	Wind speed
Fuel (hazard score)	Overall	Near-surface
Fire size at initial attack	Area at IA	Area at IA

- Location class not significant (correlated with response time)
- Vegetation type not significant at this level

Near surface fuel - (definition)

- grasses, low shrubs and heath containing suspended components of leaves, bark and twigs
 - Low sparse/ dispersed

- Moderate scattered suspended leaves, <20% dead
- High up to 40% cover, 20-50% dead
- Very High 40-60% cover, 20-50% dead
- Extreme >50% cover, >50% dead

Results - Forest FDI fuel types

Probability of initial attack success with wind speed and near surface fuel hazard rating

Wind Speed (km/h)

Results - Forest FDI fuel types

Probability of initial attack success with wind speed and time from detection to aircraft initial attack

Results - Grassland fires

107 Fires from grassland areas

- GFDI: 4–128 (wind 2.5-80km/h, Temp 18-43°, RH 7-65%)
- Curing (70-100%, mean 95%, median 100%)
- Location

- 14% interface
- 86% general/rural

Results - Grassland fires

Significant factors included in the model:

- Time from detection to aircraft IA (hours)
- Wind speed (km/h)
- Curing (%)

- Location class not significant (correlated with response time)
- Details of model in proceedings

Results - Grassland fires

Probability of initial attack success with wind speed and time from detection to aircraft initial attck

Limitations - (method/ data set)

- Definition of initial attack success
 - Not suited to all locations/ land uses
 - Subject of future work
- Weight of attack

- Not considered
- Difficult to compare over different terrain/ vegetation/ weather etc
- Subjective assessments
 - e.g. Fuel hazard scores
- Missing data
 - e.g. Grazing/ pasture condition (grassland fires)

Role of operational data

- Unique dataset in Australia
- Similar datasets collected over longer periods can be used for
 - Ongoing assessment of suppression performance
 - Development of operational guides
 - Evaluation of medium and long term strategies
 - e.g.

- Cumming (2005) used 30 years of data to investigate the impact of a changed management strategy on IA success
- Arienti *et al.* (2006) investigated the effects of fire cause, timing fuel, accessibility and response on IA and detection failures
- Key data fields related to suppression effectiveness should be collected in fire history data bases

Acknowledgements

 \rightarrow

• This work relied upon the generous input of numerous operations personnel who provided us with data

