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Introduction: While wildland fires (bushfires) are an 
anticipated event with each fire season, it is 

important that the extent of likely annual fire 

weather conditions and those of more extreme 
conditions are identified as part of community 

preparations for fire season. Historically extreme 

value analysis has been used for floods, storms, 
temperature, and wind, however, little work has 

been produced for extreme fire weather. This may 

be because historically a fire weather index is a 
composite of differing weather conditions, which, at 

their extreme, individually may not be related to 

wildland fire alone. Fire danger index systems 
generate non-dimensional parameters and in 

Australia, this has generally focussed on the forest 

fire danger index or grassland fire danger index. 

While it is difficult to ascertain individual extremes 

related to individual parameters for wildland fire, 

the use of the Generalised Extreme Values 
distribution is a suitable process for fire danger 

indices. This can be applied to deterministic fire 

behaviour assessments whether through the 
identification of rate of spread, flame length, 

intensity or suppression effort. 

Treatment options for existing homes can be more 
effectively determined and quantified under such an 

approach so as to better balance resident and fire 

fighter safety as well as recognizing environmental 
assets. 

 

 

The frequency distribution and cumulative 
distribution curves of a single site (Sydney Airport) 

are shown in Figures 1 and 2 respectively. Maximum 

FFDI recorded is 99 over a 36 year period, however, 
this provides little information as to the likelihood 

of extreme events into the future. Figure 3 and 4 

show the relationship of summer KBDI and FFDI 
over the record of data for Sydney airport, 

suggesting that drought is driving FFDI through pre-

conditioning rather than other climatic factors. 

Methodology: This study uses a generalised 

extreme values approach (Makkonen, 2006), which 

is assessed based on the inclusion of a minimum of 
n +1 years of data points.  

 The GEV distribution uses the equation T= (N + 

1)/M where: T = return period (recurrence), N= no 
of years of data and M = rank value. 

 An Excel spreadsheet was used to determine rank 

values for the FFDI values to and in some cases 
below the 1:1 year outcomes. The resultant plot 

was then subject to a log linear graph and the 

resultant line of best fit and correlation (using r2) 
determined. The resultant curve will follow the 

form y = a log(x) + b. 

Results. Ten (10) NSW weather station datasets 
were provided by the Bureau of Meteorology, 
comprising part of a National Fire Weather dataset 
(Lucas, 2010). Data is for FFDI based on1500hrs for 
wind speed and humidity, daily drought factors and 
maximum temperature as a surrogate for maximum 
FFDI. 

The GEV and regression analyses were applied to all 
10 selected weather stations and the results are 
presented in Table 1. Also included in Table 1 are 
the FFDI values corresponding to 1:50 and 1:100 
return periods in comparison with the maximum 
FFDI obtained from the record and the NSW policy 
FFDI values. 

 

 

 

 

 

 

Table 1: Regression values (a and b), correlation co-efficients 
(r2), and comparative FFDI values for return periods of 1:50 
yr, 1:100 yr, maximum recorded value and NSW Policy values 
for 10 NSW weather stations. 

Discussion. GEV analysis is a suitable technique for 
determining FFDI for bushfire protection under 

planning and construction practice. It is a preferred 

approach than reliance on frequency distribution 
and percentile analysis which underestimates the 

impact of bushfire on properties (see Figure 2).  

Likewise the use of maximum recorded FFDI may 
underestimate or overestimate the impact of fire 

weather conditions. 

The correlation co-efficient r2 for each line of fit is 
very high, illustrating the good agreement between 

the theory and the obtained FFDI vs return period 

relationship. Therefore, the theory can be applied 
with a high level of confidence to obtain FFDI of 

return periods beyond the data collection period.  
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Figure 3: Sydney Average January KBDI 1972-2009 with trend line. 

Figure 4: FFDI summer days 1972-2009. 

Figure 1:Sydney FFDI frequency distribution 

Figure 2:Sydney FFDI % cumulative frequency distribution. 
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