A Base Climate Dataset for Victoria

Tim Brown, Tesfamichael Ghidey, Hauss Reinbold, Ming Xiao

Desert Research Institute, Reno, Nevada

Graham Mills

Centre for Australian Weather and Climate Research Melbourne, Australia

Liam Fogarty

Victoria Department of Sustainability and Environment

Scientific and Applications Objectives

- Produce a 35-year daily high-resolution gridded fire weather/fire danger dataset for Victoria
 - Long-term homogeneous temporal and spatial dataset (fills in big gaps)
- Provide decision-support information for fire management
- Provide background information for climate change analyses

Relevance and uses

- Estimating climate related bushfire risk
- Estimating number of days suitable for planned burning
- Input into the allocation of fire management resources including planned burning
- Bushfire case study analysis, refinement and improvement of burning prescriptions
- Development of climate envelopes for vegetation communities
- Development of weather predictions for "fire use" decision making, and future bushfire climate predictions for strategic planning
- Provides hourly high-resolution weather input for fire spread models

Products

- A 35-year (Sep-Apr) dataset of daily fire weather elements – noon, 3pm, 9a-9a maximum/minimum values
 - Temperature
 - Relative humidity
 - Wind speed and direction
 - Precipitation
 - Evaporation
 - Solar radiation
 - FFDI
- Climatology statistics of the elements

Methods

- MM5 numerical weather prediction model
- Assess model output (validation)
- Bias correction

Why not always use just observations?

- Most observations are not in forest mountain areas
- Observations change in time
- Network; instrument; site location changes
- Pre-AWS estimated wind observations
- There is no physical basis for interpolation between observations

Numerical Weather Predictions

- Fifth Generation Penn Sate/NCAR Mesoscale Model (MM5)Model output validation
- MM5 is a community model that can be applied to real-time and historical studies of a large spectrum of weather events: mesoscale convective systems, fronts, land-sea breeze, mountain-valley circulations

Fig 1.1 The MM5 modeling system flow chart.

6-km grid size

- Latitude grid points = 142
- Longitude grid points = 172
- Total grid size per hour = 24,424
 - Per day = 586,176
 - Per year = 213,954,240
 - Per 35 years = 7,488,398,400

Model terrain

Validation

- 26 station observation points (1997-2006)
- Compare station values to corresponding grid point values

Station locations

Distribution comparison of temperature

Example case: Original MM5

Dec 10, 2006 12:00 EST

Example case: Bias

Dec 10, 2006 12:00 EST

Example case: Bias corrected

Dec 10, 2006 12:00 EST

Original

Bias corrected

Example case: Residual

Dec 10, 2006 12:00 EST

Dec 10, 2006 12:00 EST

Dec 10, 2006 12:00 EST

Dec 10, 2006 12:00 EST

Minimum relative humidity monthly climatology

Deliverables

- Phase I (1997-2006)
- Phase II (1972-1996)
- Updates (2007; 2008)

