

THE RURAL-URBAN INTERFACE: FUEL

Complex mix of vegetation and other fuels

- House structure
- House contents
- Surrounding elements
- Vehicles
- Sheds

Complex spatial distribution of materials

	Estimated amount of combustible materials (kg)					
Material	House structure	House contents	Surroundings	Vehicle	TOTAL	Mass fraction (%)
Wood	9450	1520	840		11810	60
MDF	2780	1240			4020	20
Paper		400			400	2
Textile	325	700	20		1045	5
PUR	150	190	20	40	360	2
PVC	300	250	140	20	710	4
PE/PP/PS	150	900	190	140	1380	7
Rubber				30	30	<1

SPATIAL DISTRIBUTION OF COMBUSTIBLES

Finite number of point source emissions characterised by a scale, by material and hence emission type and estimate of emission rates

© BUSHFIRE CRC LTD 2010

UNCERTAINTIES

Significant variability in:

- type, amount and material composition of items present at the RUI
- spatial distribution of materials
- elemental composition of materials
- presence of fire retardants in materials
- → Develop a useable scenario-based database including an inventory of materials and items present at RUI

EMISSIONS

Combustion products

- Nature/toxicity
- Emission rates

Factors

- Nature of fuel/material
- Ventilation
- Temperature
- Fire geometry

FACTORS DRIVING EMISSION COMPOSITION

Type of material	Combustion Product
Wood, PE, PP, PS, polyester	CO, CO ₂ , aliphatic, aromatic and oxygenated hyrdrocarbons (HC), PAHs
Nitrogen-containing material e.g., nylon, PUR, melamine, urea- formaldehyde	HCN, NOx (NO, NO ₂), NH ₃ , nitriles, amines, isocyanates, organic nitro-compounds
Halogen-containing material, e.g. PVC, FP	Halides (HCl, HF), Dioxins, chlorinated PAHs or hydrocarbons
Sulphur-containing material, e.g. wool	SO ₂ , H ₂ S, organic sulphur compounds

		Yield independent of ventilation
CO ₂ , NO, NO ₂ , SO ₂	CO, HCN, NH ₃ , H ₂ S, HC, VOCs, PAHs	HCl, HF, HBr

BUSHFIRE CRC LTD 2010

EMISSIONS – COMBUSTION PRODUCTS

- Review of existing literature data
- Identify gaps for setting up experimental burns

Small bench-scale experimental burns under controlled conditions for pure materials

- Emission rates of gaseous and particle species for combustible materials that serve as input into dispersion model
- Validation and potential use of e-nose technology
- Collection and analysis of ash residue

EMISSION FACTORS (g/kg) – LITERATURE DATA bushfire CRC

Pollutant	Wood	MDF	Paper	Textile	PUR	PVC	PE/PP/PS
CO ₂	750-1750	800-2250	750-1750	100-2500	600-2250	500-1500	400-3200
CO	10-140	10-160	10-140	10-350	40-250	20-200	10-300
HCN	0.01	1	0.01	1-70	1.5-17	0.01	0.01
NH ₃				1-10	1-2		
NOx	1.4	0.3-1.5	1.4	0.01-40	2-90	036	0.1
HCI						130-500	
THC				1-300	1-5	5-45	1-100
VOCs	1-20	1-20	1-20	1-40	1-50	1-50	5-30
PAHs	0.01-1.0	0.1-1.0	0.01-1.0	0.1	1-10	0.5-12	0.01-40
PM	2.4	3.9	2.4		26	1-30	20-160

EXPERIMENTAL BURNS - DESIGN

- Exhaust flow: 0.024 m³ s⁻¹
- Irradiance level: 25kW m⁻²
- 100 × 100 mm samples conditioned at 23 \pm 2°C

and 50 \pm 5% RH

bushfire CRC **MATERIALS** Weight Reference material Pine 20 124 Painted pine (100% acrylic self-priming exterior white paint) 20 Limited 128 Speciated VOCs, PAHs, PM Particle board 16 105 Particle board w/ melamine 16 109 limited Speciated VOCs, PAHs, PM Medium-density fibreboard 16 111 Carpet (wool/nylon blend) 12 19 Speciated VOCs, PAHs, PM Polyester insulation 37 6 Limited PUR foam (23/130) 30 5 Speciated VOCs, PAHs, PM PUR foam (36/130) CM 30 Speciated VOCs, PAHs, PM 11 Polystyrene (high density) 30 35 Speciated VOCs, PAHs, PM with cladding Limited Plasterboard 10 68

15

52

CCA-Treated pine

UNCERTAINTIES

- Variability in fire conditions: ventilation and temperature have an effect on composition and amount of combustion products emitted
 ⇒ Variability in emission factors
- Fire geometry influence on emission yields
- Pure materials vs. mixture of materials
 - → It is not feasible to determine one single EF for a material that would represent all types of fires
 - ⇒ Emission rates the most uncertain input into model

MODELLED GROUND CONCENTRATIONS

New dispersion model technique:

- Provides ground concentrations for a range of pollutants at short-time resolution
- Allows for peak, short-term and average workshift exposure assessment
- Takes into consideration exposures to a mixture of air pollutants which may have additive or synergistic effects

Air toxic	TWA (mg/m³)	Health effect
CO ₂	9000	Changes to respiratory patterns
со	34	Asphyxiant
HCN	11 (peak)	Asphyxiant
NH ₃	17	Respiratory irritant
NO	31	Hypoxia at high concentrations
NO ₂	5.6	Respiratory irritant
HCI	7.5 (peak)	Severe irritant
SO ₂	5.2	Irritant
Hydrocarbons	3.2 (benzene)	Irritant; asphyxiant; carcinogen
VOCs	1.2 (formaldehyde)	Irritant; probable carcinogens
PAHs	52 (naphthalene)	Irritant; probable carcinogens

EXPOSURE ASSESSMENT - UNCERTAINTIES

- Emission estimates for materials burnt and their spatial distribution within the RUI
- Firefighters' activities and position in relation to the smoke plume
- Changing meteorological conditions
 - ⇒ Develop a useable set of scenarios
 - Compare modelled exposure concentrations to previously measured exposures at structural fire incidents

9 BUSHFIRE CRC LTD 2010

ACKNOWLEDGEMENTS

We thank the Bushfire CRC for funding this project.

We also acknowledge the help from Justin Leonard, Mahendra Bhujel, Kate Boast and Paul Selleck

THANK YOU

Research Scientist T +61 3 9239 4435

fabienne.reisen@csiro.au