

Assessing the impact of Climate Change on Fire Weather

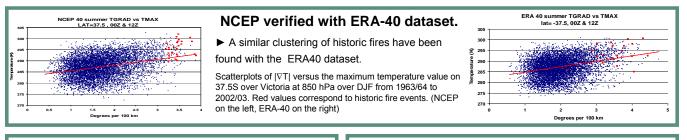
A. Hasson and K. Walsh

Department of Earth Sciences, University of Melbourne, VIC, Australia

B. Timbal and G. Mills

Bureau of Meteorology Research Centre, VIC, Australia

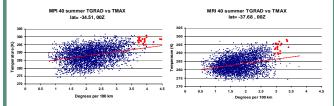
Why are the climate change impacts on Fire Weather hard to forecast?

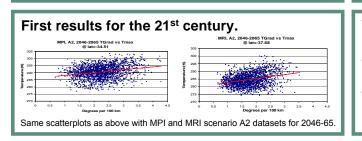

► Bushfires depend on small-scale features and extreme conditions that climate models cannot represent with sufficient accuracy and over long enough periods.

Our new approach:

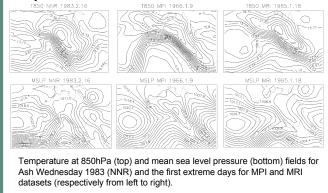
► Use of a new diagnostic tool to identify synoptic systems leading to the most destructive and disastrous bushfires experienced in southeast Australia in recent decades (Mills, 2005).

► Extremely high thermal gradients and maximum temperatures have been associated with the deep fronts inducing extreme fire danger days.


► No need to have a wide range of variables, the temperature at 850 hPa is enough. It can be readily applied to climate models of the 4th Assessment of the IPCC.


How well do the IPCC models reproduce the signal for the 20th century?

► The MPI and MRI models reproduce quite well the features found with the reanalyses for the 20th century.


► Using temperature from a lower latitude gives a better representation of the observed slope.

Same scatterplots as above but with MPI (left) and MRI (right) datasets. Red values are arbitrarily designated extreme values.

Does the proxy "high thermal gradient and maximum temperature" enable us to pick deep fronts ?

What's next ?

► Find an empirical law to determine the thresholds for the extreme values of thermal gradient and maximum temperature.

- ► Analyse the results of 2 scenarii (A2 and B1) for 10 models over 2 periods in the 21st century (2046-65 and 2081-2100).
- Export the diagnostic tool to other regions of Australia.

