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Abstract 

Wildfire occurrence statistics describe the presence and quantity of ignitions across 

spatial and temporal scales.  Fire occurrence research is based on regional fire 

incidence data containing the time, location and cause of all fires within a defined area 

and time period.  This research has also relied on other spatial and temporal data, 

including terrain, land cover, human geography, weather, and fire danger indices, in 

analyse and modelling. 

 

Fire occurrence research has been undertaken to map ignition risks, investigate causal 

factors and develop predictive models.  Ignition risk maps inform fire management 

operations and can be used to identify the best locations for fuel treatments and 

suppression resource bases.  Some fire occurrence models have been developed to 

predict the probability of a fire day and estimate the number of daily ignitions that 

may occur within a fire management region.  These predictions can be used by fire 

managers to set operational resourcing levels and locations which will optimise 

suppression effectiveness by allowing them to maximise resource availability and 

reduce response times.  Fire occurrence models have been applied in recent research 

undertaken to predict the effects of climate change on fire regimes and fire risks. 

 

Fire occurrence research has been undertaken in a variety of countries, mainly in 

North America and Europe.  Much of the research has been published in recent years 

as datasets have become more available and computing technology has allowed more 

sophisticated analyses.  Fire occurrence research papers have presented a variety of 

findings that reflect the diverse locations and regional nature of these works.  Very 

little fire occurrence research has been undertaken in Australia.  Undertaking such 

research in Australian regions will enhance knowledge of fire patterns and provide 

practical outputs that will benefit fire management. 
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Introduction 

The term fire occurrence is used to describe the presence and frequency of fires within 

a finite time and space.  Fire occurrence statistics account for all reported ignitions 

regardless of the area they burn or damage they cause.  Historical fire data, 

incorporating timing, location and cause information for all incidents, is the basis of 

fire occurrence research (Finney 2005).  Such data is typically sourced from fire and 

land management agency records and is analysed with other environmental and 

geographical variables relating to weather, vegetation, terrain, and land use.   

 

Fire occurrence knowledge and predictions are important for a variety of fire 

management functions.  Spatial fire occurrence research has been used to identify 

areas with high ignition risks (e.g.: Beverly et al. 2009; Cardille and Ventura 2001; 

Díaz-Delgado et al. 2004; Syphard et al. 2008) and has been used in broader wildfire 

risk analyses that also consider other measures, such as fire severity and the 

probability of an area being burned (e.g.: Finney et al. 2005; Martinez et al. 2009; 

Mercer and Prestemon 2005; Preisler et al. 2004; Weinstein and Woodbury 2006).  

Findings from spatial fire occurrence analyses can be used to target fire management 

actions, such as the identification of the best locations for fuel treatments and dynamic 

allocation of suppression resources (Dlamini 2010; Syphard et al. 2008; Wotton 2004; 

Wotton and Martell 2005).  Spatial fire occurrence analyses can also be used to judge 

the effectiveness of prevention programs (Donoghue and Main 1985; Donoghue et al. 

1987).   

 

Temporal fire occurrence predictions are typically based on meteorological variables, 

such as weather, weather indices and fuel moisture models, and have been developed 

to predict ignitions within spatial units.  During the fire season, daily fire occurrence 

predictions can be used to estimate the potential load on suppression resources that a 

fire management agency will face enabling them to plan levels of preparedness and 

manage resource locations (Haines et al. 1983; Tithecott 1992; Vilar et al. 2010b; 

Wotton 2004; Wotton and Martell 2005; Wotton et al. 2010).  These actions help 

optimise suppression effectiveness by enabling planning that maximises resource 

availability and reduces response times, thereby increasing the probability of initial 

attack success (Podur and Wotton 2010; Todd and Kourtz 1990; Wotton et al. 2010).   
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Much of the research has been undertaken to address the specific issue of large fire 

occurrence (e.g.: Bermudez et al. 2009; Bradstock et al. 2009; Dickson et al. 2006; 

Drever et al. 2009; Hély et al. 2010; Mendes et al. 2010; Moreira et al. 2010; Preisler 

et al. 2009; Preisler et al. 2008; Preisler and Westerling 2007) concentrating on 

determining causal factors and prediction of the most significant fire events.  However 

studies limited to large fires only consider conditions when suppression actions are 

unable to cope with the fire load.  Fire occurrence research that incorporates all 

ignitions also considers the many fires where suppression has been successful.  Some 

fire occurrence and large fire occurrence research has been undertaken to compare fire 

occurrence statistics with fire danger indices (Andrews et al. 2003; Haines et al. 1983; 

Padilla and Vega-García 2011; Preisler et al. 2004; Preisler et al. 2009; Viegas et al. 

1999).  This research also investigated other wildfire statistics such area burned, and 

numbers of fires that escape initial attack and become large for this reason.   

 

Fire occurrence research has been undertaken at regional levels, utilising data from 

specific fire management zones.  This research has been used to address regional 

concerns and have been used to define spatial and temporal trends, determine causal 

factors and develop predictive models.  The methods and results from the research are 

highly varied due to the range of environmental and human landscapes that they 

consider.  The majority of fire occurrence research has been undertaken in North 

America and Europe.  There has been very little specific fire occurrence research 

undertaken in Australia.  This review considers the methods used for analysis, 

modelling and application of fire occurrence data in order to identify appropriate 

methods for undertaking such research in parts of Australia.   

 

 

Fire occurrence analysis and modelling methods 

Fire occurrence research has largely been undertaken to gain a better understanding of 

spatial and temporal factors influencing wildfire ignitions, and to develop models that 

can be used to predict the probability of ignition in different areas and at with 

different weather conditions.   

 

Spatially based fire occurrence research is primarily concerned with the spatial 

distribution of ignitions in relation to geographic variables, such as terrain and human 
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landscape features.  This research relies on fire data with ignition point locations from 

multiple years and does not generally consider dynamic weather or time variables.  A 

range of methodologies have been employed to determine spatial factors influencing 

fire occurrence.  These include traditional statistical hypothesis tests (Cardille and 

Ventura 2001; Maingi and Henry 2007; Mercer and Prestemon 2005), linear 

(Donoghue and Main 1985) and logistic regression analysis (Cardille and Ventura 

2001; Catry et al. 2009; Chou 1992; Kalabokidis et al. 2007; Krawchuk et al. 2006; 

Martinez et al. 2009; Pew and Larsen 2001; Prasad et al. 2008; Syphard et al. 2008; 

Vasconcelos et al. 2001), classification and regression trees (Amatulli et al. 2006) and 

Bayesian network methods (Dilts et al. 2009; Dlamini 2010).  Some spatially based 

research has investigated the clustering of ignition points and have used K-function 

and L-function analyses to assess clustering and kernel density smoothing to provide 

graphical depictions (Genton et al. 2006; Hering et al. 2009; Podur et al. 2003; Turner 

2009; Wang and Anderson 2010; Yang et al. 2007). A list containing the details of 

some published spatial fire occurrence research is presented in Table 1.  

 

Temporally based fire occurrence research has been undertaken to model the 

probability of a fire occurrence, defined as one or more fires occurring within defined 

temporal and spatial limits.  Temporal fire occurrence research has also been 

undertaken to estimate the number of ignitions that may occur on a particular day.  

These models mainly use dynamic weather and fire weather index variables.  Some 

temporal fire occurrence analyses and models have been specifically undertaken to 

evaluate fire danger indices (e.g.: Andrews et al. 2003; Haines et al. 1983; Haines et 

al. 1970; Padilla and Vega-García 2011; Vasilakos et al. 2009; Viegas et al. 1999).  

These papers considered other metrics such as area burned and number of fires over a 

given size threshold and are used to select the most appropriate fire danger index for 

an area.  Similarly other papers have compared fire occurrence with dynamic live and 

dead fuel moisture content (Chuvieco et al. 2009; Viegas et al. 1992).  The influence 

of geographic variables has been minimised in most temporal fire occurrence papers 

by dividing the landscape up into relatively homogenous units and treating these 

individually. 
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Table 1. Examples of spatially based fire occurrence models and analyses. 

Reference Origin Ignition type Primary method Significant factors 
Donoghue and 

Main (1985) 

Eastern USA Anthropogenic Linear regression analysis Latitude, weather (rainfall), population density (non-urban) and number 

of legal prosecutions and convictions 

Chou (1992) Southern California, 

USA 

Not specified Logistic regression 

modelling 

Topography, vegetation, temperature, precipitation, proximity to 

buildings and transport 

Cardille and 

Ventura (2001)  

Upper Midwest USA All (97% 

anthropogenic) 

Statistical analysis (two-

sided Z tests) 

land tenure 

Cardille et. al. 

(2001) 

Upper Midwest USA All (96% 

anthropogenic) 

Logistic regression 

analysis 

Population and road density, precipitation and temperature 

Pew and Larsen 

(2001) 

Vancouver Island, 

Canada 

Anthropogenic Logistic regression 

modelling 

Temperature, distance from towns, roads and rail, precipitation 

Vasconcelos et al. 

(2001) 

Central Portugal Anthropogenic 

(arson) 

Logistic regression and 

neural network modelling 

Altitude, slope, distance from roads, agriculture and shrublands 

  Anthropogenic 

(negligence) 

Logistic regression and 

neural network modelling 

Distance from roads, urban areas and shrublands, and aspect 

Podur et al. (2003) Ontario, Canada Lightning K-function Localised dry weather and lightning-storm occurrence 

Mercer and 

Prestemon (2005) 

Florida, USA Not specified Statistical analysis 

(likelihood estimates) 

Unemployment, poverty, number of police 

Amatulli et al. 

(2006) 

Southeast Italy Not specified Decision tree analysis Land cover classification, average temperature of warmest and coldest 

months, slope and elevation 

Genton et al. 

(2006) 

Florida, USA All (75% 

anthropogenic) 

K-function Clustering for lightning, arson and railroad fires 

Krawchuk et al. 

(2006) 

Alberta, Canada Lightning Logistic regression 

analysis 

forest composition (species), fire history 

Kalabokidis et al. 

(2007) 

Northern Greece Not specified Logistic regression 

analysis 

Vegetation cover, slope, elevation, density of livestock 

Maingi & Henry 

(2007) 

Kentucky, USA Anthropogenic 

(mainly arson) 

Statistical analysis 

(Kruskal–Wallis test, 

correlation) 

Distance to roads and populated places, elevation and slope 

Sturtevant and 

Cleland (2007) 

Wisconsin, USA Anthropogenic Classification and 

regression tree analysis 

Housing density, road density, percentage owner-occupied homes, 

distance to railroads, percentage of agriculture or grassland cover and 

relative forest flammability 
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Table 1. continued 

Reference Origin Ignition type Primary method Significant factors 
Yang et al. (2007) Missouri, USA Anthropogenic K-function Land tenure, distance to towns and roads, forest type and slope 

Prasad et al. (2008) Deccan Plateau, India Not specified Logistic regression 

analysis 

Biomass density, average precipitation of the warmest quarter, amount of 

forest area, rural population density and mean annual temperature 

Romero-Calcerrada 

et al. (2008) 

Madrid region, Spain Anthropogenic Bayesian statistics 

(weights of evidence) 

Proximity to urban areas and roads 

Syphard et al. 

(2008) 

California, USA All (mainly 

anthropogenic) 

Logistic regression 

modelling 

Distance to development, roads and trails, vegetation type, density of 

wildland urban interface and average January minimum temperature 

Yang et al. (2008) Missouri, USA Anthropogenic Classification and 

regression tree modelling 

Proximity to roads, land ownership and distance to towns 

Catry et al. (2009) Portugal All (mainly 

anthropogenic) 

Logistic regression 

modelling 

Population density, followed by land cover type, elevation, and distance 

to roads 

Dilts (2009) Nevada, USA Lightning Bayesian modelling Lightning strike density, topographic roughness 

Martinez et al. 

(2009) 

Spain Anthropogenic logistic regression 

analysis 

Agricultural landscape fragmentation, agricultural abandonment and 

development processes 

Dlamini (2010) Swaziland Not specified Bayesian modelling Land cover, together with elevation, mean annual rainfall and mean 

annual temperature 

Duncan et al. 

(2010) 

Florida, USA Lightning Statistical analysis 

(correlation) 

Precipitation, lightning polarity and vegetation 

Wang and 

Anderson (2010) 

Alberta, Canada Lightning K-function Presence of air mass type thunderstorms, and combination of topography 

and dominant coniferous species 

  Anthropogenic K-function Areas where agriculture, forest and forest industries coexist 
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Many papers have considered the temporal probability of the occurrence of one or 

more fires (Table 2).  The vast majority of papers have considered the probability of a 

fire occurrence at the daily scale.  Some lightning fire occurrence models have 

considered the probability of a fire occurrence from a lightning strike (e.g.: Anderson 

2002; Dowdy and Mills 2009; Wotton and Martell 2005).  Daily fire occurrence has 

mostly been modelled using logistic regression (Andrews et al. 2003; Loftsgaarden 

and Andrews 1992; Martell et al. 1989; Martell et al. 1987; Padilla and Vega-García 

2011; Preisler et al. 2004; Reineking et al. 2010; Vega Garcia et al. 1995; Vilar et al. 

2010b; Wotton and Martell 2005).  Other authors have used methods such as artificial 

neural networks (Vasconcelos et al. 2001; Vasilakos et al. 2009), classification and 

regression trees (Krusel et al. 1993; Sturtevant and Cleland 2007; Yang et al. 2008) 

and logistic generalised additive models (Vilar et al. 2010b).  Some Canadian 

lightning fire occurrence papers (Anderson 2000; Anderson 2002; Kourtz and Todd 

1991; Wotton 2004; Wotton and Martell 2005) have divided the occurrence process 

into phases relating to ignition from a lightning strike; smouldering combustion or 

possible slow flaming combustion; and detection and reporting.  These papers have 

developed probability models for these phases and then combined them to give an 

overall estimate of lightning fire occurrence. 

 

Some temporal fire occurrence papers have presented models that predict the number 

of fires occurring on a single day (Table 3). These have used a range of approaches, 

such as poisson regression (Cunningham and Martell 1973; Wotton et al. 2003), auto 

regressive meteorological modelling (Garcia Diez et al. 1999; Garcia Diez et al. 

1994) and Baysesian modelling (Todd and Kourtz 1991).  Preisler et al. (2004) 

estimated the number of fires within a region by suming the daily probability of fire 

occurrence within each square kilometre.  Anderson (2002) estimated the number of 

daily fires in a region by summing modelled probabilities of individual lightning 

strikes.  Wotton and Martell (2005) used logistic regression models to predict the 

probability that a lightning strike would cause a sustainable reported ignition and 

multiplied this by the number of lightning strikes in defined areas each day to predict 

the number of fires. 
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Table 2. Examples of temporal models and analyses of fire occurrence (probability of one or more fires on a given day). 

Reference Origin Ignition type Primary method Significant factors 
Haines et al. 

(1970)
1
 

Northeast USA Not specified Linear regression analysis Fine fuel spread index
2
 

Cunningham and 

Martell (1973) 

Ontario, Canada Anthropogenic Poisson regression Fine Fuel Moisture Code
3
 

Haines et al. 

(1983)
1
 

Northeast USA Not specified Linear regression analysis Initial Spread Index
3
 and the Fosberg Fire Weather Index

4
 

Martell et al. 

(1987) 

Ontario, Canada Anthropogenic Logistic regression 

modelling 

Fine Fuel Moisture Code
3
, Build Up Index

3
, Fire Weather Index

3
 

Martell et al. 

(1989)  

Ontario, Canada Anthropogenic Logistic regression 

modelling with periodic 

function 

Fine Fuel Moisture Code
3
 and day of the season 

Kourtz and Todd 

(1991) 

Quebec, Canada Lightning Expert systems analysis Lightning activity, rainfall, fuel moisture content, duff depth, Drought 

Code
3
, Duff Moisture Code

3
, Initial Spread Index

3
 

Krusel et al. 

(1993)
5
  

Northwest Victoria, 

Australia 

Not specified Decision tree analysis Meteorological variables (temperature, days since last rain, Keetch-

Byram Drought Index
 6
, wind speed and relative humidity) 

Vega Garcia et al. 

(1995) 

Alberta, Canada Anthropogenic Logistic regression 

modelling 

District, Build Up Index
3
 and Initial Spread Index

3
 

Andrews et al. 

(2003)
1
 

Arizona, USA All Logistic regression 

modelling 

Energy release component
7
 

Preisler et al. 

(2004)
9
 

Oregon, USA All Logistic regression 

modelling 

Spatial location, day in year, elevation, 1000 hour fuel moisture
7
, dry 

bulb temperature and state of weather
8
 

Prestimon and 

Butry (2005) 

Florida, USA Anthropogenic 

(arson) 

Poisson auto-regression Recent fire activity
10

, day of week, economic conditions, fire 

management actions 

Albertson et al. 

(2009) 

English Peak District, 

UK 

Anthropogenic Probit model Fire in last week, rain, temperature, public holiday, day of the week and 

month 

Chuvieco et al. 

(2009)
11

 

Central Spain All Poisson auto-regression Live fuel moisture 

Vasilakos et al. 

(2009)
1
 

Lesvos Island, Greece all (mainly 

anthropogenic) 

Neural network modelling Rainfall, 10-hour fuel moisture content
7
, month, relative humidity, 

elevation and day of the week 
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Table 2. continued 

Reference Origin Ignition type Primary method Significant factors 
Reineking et al. 

(2010) 

Canton Ticino, 

Switzerland 

Lightning logistic regression 

analysis 

Duff Moisture Code
3
, Buildup Index

3
 and LandClim Drought Index

12
, 

  Anthropogenic logistic regression 

analysis 

Angstroem
13

 and Fosberg Fire Weather Index
4
 

Vilar et al. (2010b)  Madrid region, Spain Anthropogenic Logistic regression 

modelling 

Day of year, urban density, distance from roads and rail, elevation, 

maximum temperature 

Padilla and Vega-

García (2011)
1
 

Spain Anthropogenic Logistic regression 

modelling 

Weather indices (Fire Weather Index
3
, Fine fuel moisture code

3
 and 1000 

hour fuel moisture
7
) and variables (maximum temperature and relative 

humidity), road density, distance from populations, and live fuel moisture 

content. 
1
 Papers using fire occurrence for fire danger index evaluation. 

2
 The fine fuel spread index is based on the moisture content of fast drying fuels and wind speed (Main 1969). 

3
 Components of the Canadian Forest Fire Weather Index System (Van Wagner 1987). 

4
 Based on temperature, humidity and wind speed (Fosberg 1978). 

5
 Considered categorical criteria for fire activity, which included number of fires, area burned and resources deployed on a given day. 

6
 From Keetch and Byram (1968). 

7
 From the US National Fire Danger Rating System (Deeming et al. 1977). 

8
 Categorical variable: clear, scattered clouds, broken clouds, overcast, raining or snowing and thunderstorm. 

9
 Fire occurrence considered over a monthly scale. 

10
 Binary variable related to the occurrence of other fires in the same district in the previous 11 days. 

11
 Paper comparing fire occurrence with live fuel moisture content estimated from satellite imagery.  The time period considered is eight days owing to the return cycle of the 

satellite. 
12

 From Bugmann and Cramer (1998). 
13

 Calculated from temperature and relative humidity, defined in Reineking et al. (2010). 
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Table 3. Examples of temporal models predicting the number of daily fires. 

Reference Origin Ignition type Modelling type Model parameters 
Haines et al. 

(1983)1 

North-eastern USA Not specified Linear regression  Ignition Component2 

Todd and Kourtz 

(1991) 

Quebec, Canada Anthropogenic Bayesian  Wind speed, Fine Fuel Moisture Code3 and Duff Moisture Code3 

Garcia Diez et al. 

(1994) 

Galicia, Spain Not specified Autoregressive  Atmospheric stability and saturation deficit level 

Mandallaz and Ye 

(1997) 

South Switzerland All Poisson regression Region, day of week, recent fire history, relative humidity and ETP4 

 South France All Poisson regression ICONA4, recent fire history and IP4 

 North Italy All Poisson regression Region, recent fire history, precipitation, humidity, wind speed and Fine Fuel Moisture 

Code3 

 Portugal All Poisson regression RN4, IREPI4 and recent fire history 

Garcia Diez et al. 

(1999) 

Galicia, Spain Not specified Autoregressive  Atmospheric stability and humidity 

Anderson (2002) Saskatchewan, 

Canada 

Lightning Physically based probabilistic  Number of lightning strikes, fuel moisture content, rainfall, forest type 

Wotton et al. 

(2003) 

Ontario, Canada Anthropogenic Poisson regression Probability of sustained flaming, Fine Fuel Moisture Code3, Duff Moisture Code3, Drought 

Code3 

Preisler et al. 

(2004)6 

Oregon, USA All Sum of predicted occurrence in 

each grid 

Spatial location, day in year, elevation, 1000h fuel moisture2, dry bulb temperature and 

state of weather5 

Wotton and 

Martell (2005) 

Ontario, Canada Lightning Number of lightning strikes 

multiplied by the probability of 

a strike igniting a detectable fire 

Number of lightning strikes, Sheltered Duff Moisture Code7, Drought Code3, Fine Fuel 

Moisture Code3, percent positive lightning strikes, percent closed canopy fuels, timing of 

storm, drying phase, and rain occurrence 

Wotton et al. 

(2010) 

Canada Anthropogenic Poisson regression Ecoregion, Fine Fuel Moisture Code3, Duff Moisture Code3, Drought Code3, timing within 

season (by ignition cause) and time of season 

  Lightning Poisson regression Ecoregion, Duff Moisture Code3, Fine Fuel Moisture Code3, Drought Code3 and time of 

season 
1 Paper using number of fires per day for fire danger index evaluation. 
2 From the US National Fire Danger Rating System (Deeming et al. 1977). 
3 Components of the Canadian Forest Fire Weather Index System (Van Wagner 1987). 
4 Undefined and unreferenced Swiss (ETP), Spanish (ICONA), Portuguese (IP), Italian (IREPI) and French (RN) fire danger indices used by Mandallaz and Ye (1997).  
5 Categorical variable: clear, scattered clouds, broken clouds, overcast, raining or snowing and thunderstorm. 
6 Predicted the number of fires over a month. 
7 From Wotton et al. (2005). 
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Factors affecting fire occurrence 

A large variety of factors have been found to affect fire occurrence and been used in 

prediction models (Tables 1-3).  These depend on the types of ignition occurring in 

the locations considered and the variables that are available for testing.  Many fire 

occurrence papers have considered lightning caused fires and anthropogenic fires 

separately as they are affected by distinctly different process and have different 

temporal and spatial distributions (Amatulli et al. 2007; Fujioka et al. 2008; Gill et al. 

1987; Reineking et al. 2010; Vilar et al. 2010a; Wang and Anderson 2010; Wotton et 

al. 2010).  Most papers have only considered fires from one of these ignition 

categories or have come from regions dominated by one type of ignition.   

 

Lightning ignited fires require storms for ignition, particularly those with little or no 

precipitation.  The occurrence of such storms has been linked with atmospheric 

conditions featuring low moisture and high instability (Dowdy and Mills 2009; Rorig 

and Ferguson 1999).  Many lightning fire occurrence papers have used variables 

related to storm activity, such as storm occurrence (Podur et al. 2003), type of storm 

(Wang and Anderson 2010), lightning polarity (Anderson 2002; Duncan et al. 2010), 

lightning strike density (Dilts et al. 2009), and number of lightning strikes (Kourtz 

and Todd 1991; Wotton and Martell 2005).  As lightning ignitions can smoulder for 

days before detection, some authors (e.g.: Cunningham and Martell 1976; Tithecott 

1992; Wotton 2004; Wotton and Martell 2005) have specified that the occurrence and 

reporting (“arrival”) of lightning fires be considered separately.   

 

Some spatial analyses of lightning ignited fires have linked them with terrain features 

(e.g.: Dilts et al. 2009; Kilinc and Beringer 2007; McRae 1992; Vazquez and Moreno 

1998) and areas with drier fuels (e.g.: Podur et al. 2003; Wotton and Martell 2005).  

Temporal lightning fire occurrence models and analyses have highlighted the 

importance of fuel moisture and rainfall for prediction.  Many models have used 

indices within the Canadian Forest Fire Weather Index System (CFFWIS) (Van 

Wagner 1987), particularly the Duff Moisture Code (e.g.: Anderson 2002; Flannigan 

and Wotton 1991; Krawchuk et al. 2006; Podur et al. 2003; Reineking et al. 2010; 

Wotton 2004; Wotton and Martell 2005; Wotton et al. 2005), which is associated with 

the moisture content of deeper fuel layers.  An Australian report (Dowdy and Mills 

2009) that used the CFFWIS found the Fine Fuel Moisture Code provided the best 
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indication of ignition from lightning, probably due to the general lack of duff in 

Australian forests and the warmer and drier climate.  Fuel moisture related variables 

are less important in arid areas where they are more available for burning and ignition 

mechanisms have a greater influence on fire occurrence (Dilts et al. 2009).  Krawchuk 

et al. (2006) found fuel variables related to species composition and fuel age to 

influence the inter-annual variation in lightning ignited fires.  Fuel related variables 

have not been considered in other research, often because they have used areas with 

relatively homogenous vegetation.  

 

The majority of spatial fire occurrence research has been conducted in areas 

dominated by anthropogenic ignitions.  These have linked anthropogenic fire 

occurrence with a range of geographic variables (see Table 1) associated with 

population density (e.g.: Cardille et al. 2001; Catry et al. 2009; Donoghue and Main 

1985; Mercer and Prestemon 2005; Prasad et al. 2008; Romero-Calcerrada et al. 

2008; Sturtevant and Cleland 2007); proximity to roads, towns and infrastructure 

(e.g.: Catry et al. 2009; Chou et al. 1993; de Vasconcelos et al. 2001; Maingi and 

Henry 2007; Martinez et al. 2009; McRae 1995; Padilla and Vega-García 2011; Pew 

and Larsen 2001; Roman-Cuesta et al. 2009; Romero-Calcerrada et al. 2008; Syphard 

et al. 2008; Vega-Garcia et al. 1996; Vega Garcia et al. 1995; Vilar et al. 2010b) and 

land use variables (e.g.: Cardille and Ventura 2001; Padilla and Vega-García 2011; 

Romero-Calcerrada et al. 2008; Vasconcelos et al. 2001).  Some spatially based 

investigations of anthropogenic fire occurrence have also identified socioeconomic 

variables, such as poverty and unemployment rates as having some influence (e.g.: 

Donoghue and Main 1985; Maingi and Henry 2007; Martinez et al. 2009; Mercer and 

Prestemon 2005; Sturtevant and Cleland 2007).  Fuel variables have been considered 

in a few papers, mainly in terms of vegetation type (e.g.: Padilla and Vega-García 

2011; Syphard et al. 2008; Vega-Garcia et al. 1996), but have been consistently found 

to be less significant than the human variables.  

 

Temporal fire occurrence models considering anthropogenic ignitions assume that fire 

prevention measures, land use and socioeconomic variables remain constant during 

the data collection period (Martell et al. 1989; Todd and Kourtz 1991; Vilar et al. 

2010b).  Many of these models have linked fire occurrence to the moisture content of 

surface fuels, which has often been estimated with the Fine Fuel Moisture Code from 
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the CFFWIS (Martell et al. 1989; Martell et al. 1987; Padilla and Vega-García 2011; 

Vega Garcia et al. 1995; Wotton 2004; Wotton et al. 2003).  Some models have 

included variables associated with date (day of the year or season) to account for the 

distribution of fires occurring across the fire season (e.g.: Albertson et al. 2009; 

Martell et al. 1989; Preisler et al. 2004; Vilar et al. 2010b).   

 

Some anthropogenic fire occurrence research has considered the influence of different 

ignition types.  Martell et al. (1989) and Wotton et al. (2003) divided anthropogenic 

fires into two groups based on their annual distributions of occurrence.  Vasconcelos 

et al. (2001) considered arson and negligent ignitions separately and found that they 

exhibited different spatial patterns.  Separating arson ignitions from other 

anthropogenic ignitions in fire occurrence prediction would be worth pursuing as 

arson ignitions have been found to have distinct spatial trends related to accessibility 

(Maingi and Henry 2007; Prestemon and Butry 2006) and temporal trends associated 

with weekends and public holidays and recent fire activity (Beale and Jones 2011; 

Mandallaz and Ye 1997; Prestemon and Butry 2005).   

 

Discussion 

All fire occurrence research is based on fire records and requires data that spans 

multiple fire seasons.  Fire incident databases maintained by fire agencies are the most 

common source of this data.  Though occasionally, when these records are not 

available, archives of satellite images have been used for spatial fire occurrence 

research (e.g.: Dlamini 2010; Maingi and Henry 2007; Prasad et al. 2008).  Research 

papers based on satellite data rely on the identification of fire scars, and it is unlikely 

that they would detect all fires, particularly smaller fires.  While official fire agency 

records are a more reliable data source, there can be significant variability in the 

reporting standards kept by agencies (Andrews et al. 2003).  The availability of fire 

records has restricted fire occurrence research in the past.  Recent trends for increased 

data capture within fire agencies in many countries and advances in computer 

programs designed for data analysis and modelling have enabled more research to be 

undertaken in this field, as demonstrated by the large number of papers published last 

few years.   
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The critical data fields required for the fire observation components of fire occurrence 

data sets regard the time and location of a detected ignition.  Detection time will 

usually be different to the ignition time depending on the source of the ignition.  

Accidental fires may be detected and reported within minutes of ignition.  Lightning 

fires can smoulder for many days before they grow to a detectable size (Anderson 

2000; Anderson 2002; Cunningham and Martell 1976; Kourtz and Todd 1991; 

Wotton and Martell 2005), although in Australia, the majority of lightning ignited 

fires have been found to be detected soon after ignition (Dowdy and Mills 2009).  

Detection time data is essential for developing temporal fire occurrence models for 

operational purposes.  In the same way, ignition location coordinates are essential for 

all spatial fire occurrence analyses.  Distinguishing between different ignition sources, 

particularly between anthropogenic and lightning caused ignitions, is beneficial for 

analysing fire occurrence data, as these are driven by different processes, as described 

earlier.   

 

Spatial fire occurrence analysis requires geographic data encompassing terrain; 

vegetation and human factors (see Table 1 for examples).  Human factors relate to 

land tenure, population and infrastructure.  Predictor variables for these fields are 

either proximity measures, such as distance between an ignition and the nearest road 

or town, or the density measures.  The determination of these variables is done in a 

geographic information system using the coordinates of each ignition point.  Some 

spatial analyses have considered weather variables based on geographic interpolations 

of average annual or monthly values (e.g.: Dlamini 2010; Pew and Larsen 2001; 

Prasad et al. 2008). 

 

Temporal fire occurrence research typically uses variables related to weather and 

weather indices (Tables 2 and 3).  These may be spatially interpolated to give a better 

approximation of actual values at ignition points (e.g.: Wotton and Martell 2005).  

Some timing variables have been considered, such as Julian date, day of the season, 

day of the week and public holidays (e.g.: Albertson et al. 2009; Martell et al. 1989; 

Preisler et al. 2004; Reineking et al. 2010).  Temporally based papers have included 

spatial variables by dividing the landscape into units and giving an average value for 

each spatial variable in each unit.  
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Fire occurrence research has always been applied to defined regions associated with 

management, environmental and political boundaries.  This research has been 

undertaken in a variety of countries, with most papers originating from USA, Canada 

and Spain (Tables 1-3).  Fire occurrence related papers originating from Australia 

have considered causal factors for lightning ignited fires (Dowdy and Mills 2009; 

McRae 1992) and the weather conditions on days of high fire activity in the Mallee 

region of Victoria (Krusel et al. 1993).  No other papers have been published that 

investigate the spatial or temporal occurrence of fires in regions of Australia.  

Australia is likely to have different fire occurrence patterns to other countries because 

of its unique climate, vegetation and culture.  Fire occurrence patterns are also likely 

to be highly variable across Australia for these reasons. 

 

Some recently published papers have applied temporal fire occurrence models in 

climate change predictions (Albertson et al. 2010; Drever et al. 2009; Krawchuk et al. 

2009; Podur and Wotton 2010; Wotton et al. 2003).  These papers have generally 

applied simulated weather from climate change prediction models to regionally based 

fire occurrence models for the purpose of examining the effects of climate change on 

fire regimes.  Papers considering regions in Canada (Drever et al. 2009; Krawchuk et 

al. 2009; Podur and Wotton 2010; Wotton et al. 2003) and the UK (Albertson et al. 

2010) have indicated a general increase in the number of expected fires with varying 

regional effects.  No such research has been undertaken in Australia, other than a 

recent paper concerned with large fire probability by Bradstock et al. (2009) who 

suggest significant increases in the occurrence of days suitable for large fires in the 

Sydney region.  Developing Australian fire occurrence models will help facilitate 

better forecasting of the effects of climate change on the Australian fire environment. 

 

Summary and recommendations 

Wildfire occurrence research has been undertaken in many parts of the world to 

enhance knowledge of factors affecting the distribution of wildfire ignitions and 

develop predictive models.  This type of research utilises historical fire data and has 

been undertaken at regional levels.  A variety of analysis and modelling techniques 

have been applied to fire occurrence data, although logistic regression has been used 

in much of the spatially based research and for most models predicting the occurrence 

of one or more fires within defined spatial and temporal limits.  Most papers have 



 16 

considered lightning and anthropogenic ignitions separately or have been undertaken 

in regions where there is one dominant ignition cause.  These ignition types have been 

separated because they sources are driven by different processes and have different 

spatial and temporal distributions.  Some studies have also considered arson and 

accidental anthropogenic ignition sources separately.   

 

A large number of influential variables have been identified by fire occurrence 

research.  These reflect the variety in climate, landscape and cultures in the regions 

where they have been undertaken.  Generally anthropogenic ignitions have been 

found to be influenced by human geography variables related to proximity to and 

density of people and infrastructure, as well as occurrence of weekends and public 

holidays, and the moisture content of surface fuels.  Lightning fire ignitions have been 

linked with storm activity, precipitation and the moisture content of heavier fuel 

layers. 

 

Spatially based fire occurrence research has been used identify areas with high 

ignition risks, based on fire history and geographic associations.  This information has 

been used in broader wildfire risk analyses and in fire management operations where 

it has aided the targeting of fuel treatments and the allocation of suppression 

resources.  Temporally based studies have developed models predicting the 

probability of a fire occurrence day and the number of fires that could occur on a 

given day.  These types of models allow fire managers to estimate the suppression 

load that an agency will face and plan resource availability and locations to address 

that load, thereby optimising suppression effectiveness. 

 

While, there has been little fire occurrence related research undertaken in Australia, 

there is much to be gained by such work in the form of practical fire management 

application.  Results from related research undertaken in other parts of the world are 

not readily transferrable to Australia, as the research is highly regional and Australia 

has unique fire environments.  An Australian fire occurrence study would be able to 

investigate the utility of Australian fire danger indices, drought measures and fuel 

moisture models for predicting fire occurrence. 
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An Australian fire occurrence research project should initially investigate a case study 

area with desirable Australian attributes (e.g.: Eucalypt dominated vegetation).  A 

suitable region would require comprehensive fire agency records and preferably have 

uniform vegetation, terrain and human geography.  Records available for analysis 

would need to include a variety of types of data that can be aligned over a common 

time period and region.  Table 4 outlines the variables that should be considered for 

Australian fire occurrence case studies.  Data for the case study region should be used 

to investigate both spatial and temporal relationships within the case study region.  

Information on suspected ignition source will be critical to allow lightning and arson 

and other anthropogenic sources to be considered separately.  Areas selected for 

further Australian case studies will also require high quality data to be available and 

should be selected from regions with contrasting features to the first, so that a variety 

of landscapes can be investigated.  Data sets for case studies may be useful for other 

related analyses, such investigating large fire occurrence and initial attack success, if 

appropriate other data (e.g.: fire area data) is available. 

 

Table 4.  Variables to consider for Australian fire occurrence case studies 

Variable type Description Importance 
Fire occurrence Coordinate location of ignition point, time 

of detection, suspected cause. 

Essential 

Standard weather 

variables 

Standard Bureau of Meteorology weather 

station parameters (temperature, dew point, 

wind speed & direction, pressure, 

precipitation etc). 

Essential, preferably gridded data to 

reflect conditions at ignition points 

in temporal study.  Spatial averages 

desirable for spatial study. 

Combined 

weather variables 

Fire danger indices, drought indices and 

fuel moisture models (calculated from 

previous) 

Essential for temporal study.  Spatial 

averages desirable for spatial study. 

Storm/ lightning 

occurrence 

Lightning strike records, rainfall associated 

with storm events, atmospheric stability. 

Highly desirable 

Land cover and 

vegetation 

Vegetation type, fire history, fuel hazard 

classification, curing etc. 

Vegetation type essential.  Fire 

history and fuel information highly 

desirable. 

Land tenure and 

use 

Categorised land ownership and/or 

management, type of agriculture etc. 

Essential for spatial study. 

Terrain Elevation, aspect, slope etc. Highly desirable 

Population Proximity to towns/ suburbs, population 

density 

Essential (to have at least one type) 

for spatial study. 

Infrastructure Proximity to/ density of roads, tracks, fire 

trails, rail, industry etc. 

Essential for spatial study. 

Timing Julian date, day of week, public/ school 

holiday. 

Essential 

Socio-economic Wealth/ poverty indicators, crime rates etc. Desirable for spatial study. 

Fire area Area of fire at initial attack and 

containment. 

Useful for future related research 

(e.g. large fire occurrence, initial 

attack success). 
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