Hazard in the Workplace – Fire Crew Protection

David Nichols
Country Fire Authority
Victoria

- RFS Crews, January 1998
- Wingello Tanker
- Johnson Creek, NSW
- 1 death, 7 injured

- CFA Crews, December 1998
- Geelong West & Geelong City Tankers
- Linton, Vic.
- 5 deaths

Joint Initiative
Country Fire Authority
NSW Rural Fire Service
CSIRO
Project Goal

To research and develop vehicle crew protection systems for the safety of firefighters during wildfire suppression.

Project Objectives

- Identify and test existing water spray systems
- Identify and define wildfire burnover conditions
- Establish test parameters
- Develop test methods and facility
- Develop prototype crew protection system
- Test prototype crew protection systems
- Validate results and report outcomes

Project Research Stages

1. Identify and define crew protection issues
2. Establish test parameters
3. Evaluate crew protection systems using wildfire simulator
4. Validate wildfire simulator results

Stage 1: Identify and Define Issues

Crew Protection Issues

- Lack knowledge of tanker components combustion
- Various spray systems exist
- Spray systems designed without scientific base
- Effect of wind on spray systems
- No evaluation procedures exist
- Fire burnover conditions need to be identified
- Crew protection system prototype required
- Test parameters need to be defined
- Validation procedures need to be established
Stage 2: Establish Test Parameters

Experimental Requirements

- Identify and define fire burnover conditions
- Develop a model defining wildfire conditions
- Assess and test existing spray systems
- Combustion and toxicology assessment of vehicle components:
 - Burning characteristics of tires
 - Flame immersion of air brake lines
 - Analysis of cabin components
 - Analysis of window glass
- Develop and test prototype spray system
- Develop flame front simulator

Materials Testing

- Radiant Heat Panel
- Oil Pan Fixture

Laboratory Results

- Rubber materials ignited at moderate radiant levels
- Existing spray systems proved ineffective
 - Sprays affected at all wind speeds
 - Cabin hot spots without water protection
 - Irregular surfaces not covered
 - Not all glass surfaces covered with water
 - Glass could fail under burnover conditions
- Prototype spray system developed
- Prototype spray configuration provided good coverage at moderate wind velocities
Hazard in the Workplace – Fire Crew Protection

Stage 2: Establish Test Parameters

Simulator Test Facility

Simulator Test Facility
NSW RFS Bedford On Fire Front Simulator

- Flame Front Simulator Requirements
 - Simulator facility
 - Construct gas fired flame front simulator
 - Variable fire intensity: 2.0 MW/m to 12 MW/m
 - Direct flame impact for up to 1 minute
 - Large scale for complete tanker/appliance testing

- Test methods
 - Simulate radiant heat and flame impact
 - Test material degradation/toxics off gassing
 - Validate water spray protection tests - repeatable
 - 500 Litres water
 - Minimum of 5 minutes coverage

Simulated Wildfire Conditions

<table>
<thead>
<tr>
<th>Intensity (MW/m)</th>
<th>2.5</th>
<th>5</th>
<th>7.5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Loads (tonnes/ha)</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Fire Danger Index</td>
<td>20</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Wind Speed (Km/hr)</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Air Temp (°C)</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>43</td>
</tr>
<tr>
<td>Relative Humidity (%)</td>
<td>30</td>
<td>15</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Drought Factor</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Flame Depth (m)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Flame Resident Time (s)</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>

Crew Conditions

- Metabolic Body Temperature must not rise by more than 1.5°C
- Toxic gases to not exceed:

<table>
<thead>
<tr>
<th>Gas</th>
<th>Time (seconds)</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>1450</td>
<td>500 ppm</td>
</tr>
<tr>
<td>HCL</td>
<td>600</td>
<td>35 ppm</td>
</tr>
<tr>
<td>HF</td>
<td>800</td>
<td>ppm</td>
</tr>
<tr>
<td>NO_2</td>
<td>350</td>
<td>38 ppm</td>
</tr>
<tr>
<td>HBr</td>
<td>600</td>
<td>35 ppm</td>
</tr>
<tr>
<td>HCN</td>
<td>140</td>
<td>50 ppm</td>
</tr>
<tr>
<td>SO_2</td>
<td>120</td>
<td>5 ppm</td>
</tr>
</tbody>
</table>
Hazard in the Workplace – Fire Crew Protection

Stage 2: Establish Test Parameters
Wildfire Simulator Design

Stage 3: Evaluate Crew Protection Systems
CFA ACCO 610® On Fire Front Simulator Test Bed

Tests
- 25 tests conducted on 5 different vehicles
- Fire line intensities from 2.0 to 10.0 MW/m
- Base line tests conducted without water spray at each fire line intensity
- Fire duration from 14 to 17 minutes
- Over 50 data points for each test
- 5 video cameras
- Gas collection at 3 second intervals
- Various spray system configurations tested
- Various crew protection components tested
Hazard in the Workplace – Fire Crew Protection
Stage 3: Evaluate Crew Protection Systems
Results

Air Temperature Within Cabin

- Flame front simulator effective test bed
- Tanker cabins structurally sound
- Windows are durable under radiation and flame contact up to 10.0 MW/m
- External tanker fittings emit toxic gas
- Temperature stratification evident in cabin
- Limiting radiant heat in cabin/ROPS critical
- Survivability unlikely in an unprotected tanker for fire intensities greater than 5.0 MW/m
Stage 3: Evaluate Crew Protection Systems

Prototype System Features

- 24 nozzles: Cabin, ROPS, heat shielding, tyres
- Use vehicle’s reserve water supply
- Supply at least 5 minute water coverage
- Incorporate radiant heat curtains cabin/ROPS
- Removal of flammable material, i.e. mud flaps
- Increase heat shielding-ROPS, pump, batteries
- Air intake metal pre-cleaner for truck engine and pump

Testing Prototype Crew Protection System

CFA Hino Dual Cabin Tanker With Spray System

Prototype System Test Results

- Radiant heat curtains reduce cabin temperatures and can reduce flame intrusion
- Protected tanker at low to moderate fire intensities up to 10.0 MW/m
- Reduced internal cabin temperature (45 to 56°C) when compared to external temperatures (500 to 950°C)
- Radiant heat loads inside cabin above pain threshold, burns to skin likely in fire intensity >5.0 MW/m
- Mean body temperature increases exceed 1.5°C when unprotected in fire intensities >5.0 MW/m
- Toxic gas survivability acceptable with spray and heat curtains up to 10.0 MW/m

Stage 4: Field Validation Tests

Experiment Design

- Field experiment parameters
 - Fire line intensities up to 5.0 MW/m
 - Temperature in low to mid 20s °C
 - Low to moderate wind velocities, >25k/hr
 - Relative Humidity, 20%
 - FFDI, 16 (High)
 - Fuel loads, >20 t/hectare
- Site selection at Tumbarumba, N.S.W.
- Bushfire CRC participation
Hazard in the Workplace – Fire Crew Protection
Stage 4: Field Validation Tests
Validation Field Test Site

Participants
- CSIRO (CFFP, CMIT)
- NSW RFS
- CFA
- State Forests NSW
- NSW NPWS
- Dept Conservation and Land Management, WA
- Forest Research NZ
- University of Melbourne
- Dept of Sustainability and Environment Victoria
- UNSW at ADFA
- BoM (fire weather forecasting)
- Bushfire CRC

2003-2004 Work Plan
- Pre fire measurements
 - Weather (Oct- Mar)
 - Fuel (Nov-Jan)
- Truck instrumentation (Nov – Dec)
- Field instrumentation (Jan-Feb)
- Experimental fires
 - Burning experiments (Jan – Feb)
 - Post fire measurements (Jan – Mar)
- Data reduction
 - Data analysis (Mar-Jun)
 - Reports (Mar, Oct)

Tumbarumba Field Test Site Fuels
Predominately White Gum, Peppermint mixed forest with heavy ground fuels

Plot E: 26 t/ha
Plot G: 25 t/ha

25 t/ha

25 t/ha
Stage 4: Field Validation Tests

Validation Field Test Site

Plot E Plot G

NSW RFS Isuzu Tanker CFA Dual Cabin Hino Tanker

Plot G Burning Conditions

- Temperature: 28°C
- Relative humidity: 20%
- Wind speed: 17 km/h, gust 35 km/h
- Wind direction: SW
- FFDI: 16 (High)
- Fuel load 26t/ha
- Slope 10-20°

Plot G Aerial View

Plot G Burning Conditions

- FMC: 8.4%
- ROS: 165 – 930 m/hr
- Fire Line Intensity:
 - 1230 - 6920 kW m⁻¹
- Flame height: 1 - 4 m
Hazard in the Workplace – Fire Crew Protection

Stage 4: Field Validation Tests

Plot G Burning Results

CFA Dual Cabin Hino Tanker

NSW RFS Isuzu Tanker
Hazard in the Workplace – Fire Crew Protection

Stage 4: Field Validation Tests

Results
- Prototype system protected truck during tests
- Cabin temperatures at 40°C at lower levels
- ROPS temperatures at 56°C at lower levels
- Toxics levels survivable for tests
- Minor damage to truck with spray system operating
- Fuel moisture around vehicles altered with spray
- Both truck and pump engines continued operation
- Field tests longer fire duration but lower intensity
- Validation results align with simulator results at fire intensity levels tested

Conclusions
- Radiant heat entry into the cabin is most critical factor limiting survival
- Tyres, mud flaps, hoses exposed to radiant heat a source of toxics and flame if not protected
- Radiant heat curtains effective in reducing inside cabin and ROPS radiant heat and temperatures
- Well designed spray system will provide useful gains in firefighter safety up to 10.0 MW/m²
- Total truck protection required to promote survivable conditions for crew
- Fire fighting vehicles are not designed to provide survivable conditions in High Intensity burnovers
- Consideration of prototype components incorporation into future tanker designs

Hazard in the Workplace – Fire Crew Protection

Stage 4: Field Validation Tests

Table 1

<table>
<thead>
<tr>
<th>Tanker</th>
<th>Plot G Test 26</th>
<th>Mogo Test 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity (MW/m)</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Temperature:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient</td>
<td>28°C</td>
<td>28°C</td>
</tr>
<tr>
<td>Cabin head high</td>
<td>50°C</td>
<td>52°C</td>
</tr>
<tr>
<td>Cabin seat level</td>
<td>40°C</td>
<td>41°C</td>
</tr>
<tr>
<td>ROPS head high</td>
<td>63°C</td>
<td>39°C</td>
</tr>
<tr>
<td>ROPS seat level</td>
<td>56°C</td>
<td>32°C</td>
</tr>
</tbody>
</table>

Toxics:
- Cabin: Survivable
- ROPS: Survivable

Notes:
- CFA Crews, December 1999
- Geelong West & Geelong City Tankers
- Linton, Vic.
- 5 deaths