

DESIGNING VALID AND RELEVANT TRAINING AND TESTING SCENARIOS FOR INDUSTRY.

Sally A Ferguson, Matthew JW Thomas and Madeline Sprajcer. Sarah M Jay

Centre for Sleep Research, University of South Australia, SA

Brad Aisbett, Cara Lord, Katrina Onus

Centre for Exercise and Sports Sciences, School of Exercise and Nutrition Sciences, Deakin University, VIC.

CONTEXT FOR THE WORK

Environmental and Occupational Challenges

ASH: physical, physiological and cognitive performance changes under conditions of sleep restriction, heat and smoke.

Aim: to provide an evidence base on which decisions about manning, workload, task allocation can be made using a risk management process.

THE CURRENT EVIDENCE

What we do know?

Currently available evidence:

- Laboratory data not specific to volunteer bushfire-fighters
- Observational field data not controlled

Proposed Research

- Builds a bridge between the laboratory and the field
- Aims to measure performance in a controlled but realistic environment

SIMULATION FIDELITY

Ensuring research objectives can be met

Definition of Fidelity

The degree of correspondence between real-world operations and simulated activities in terms of cues, responses, and actions that can be performed (Miller, McAleese, & Erickson, 1977).

Major Dimensions

- a) Fidelity (Engineering) referring to the physical correspondence of the simulator's hardware.
 - Does it look the same?
 - Does it work the same way?
- **b)**Realism (Perception) refers to the perceptions and subjective judgments of the people using the simulation.
 - Does is seem realistic?
- c) Validity (Suitability) referring to the suitability of the simulation for a specific application.
 - Does is meet the project objectives?
 - Does is produce valid and reliable measures of performance?

SIMULATION FIDELITY

Ensuring research objectives can be met

Simulation Fidelity and Research

Simulation in the research environment must achieve a balance between various dimensions of fidelity and the rigours of experimental control. This balance results in inevitable trade-offs, each of which must be carefully considered in order to maximise the overall value of the research process.

Ultra-High Fidelity Representation of Bushfire Scenario

Highly dynamic environment

DANGEROUS

DIFFICULT TO REPEAT & CONTROL

DIFFICULT TO ACCURATELY MEASURE PERFORMANCE

Low Fidelity Representation of Bushfire Scenario

Laboratory Experiment

ABSTRACTED FROM REAL WORLD

HIGHLY CONTROLLED

EASY TO ACCURATELY MEASURE PERFORMANCE

SIMULATION SCENARIOS

Advantages

Simulation scenarios:

- Control variables we are interested in
- Consistency in assessment of key measures
- Repeatable conditions

Three stages in the construction of the simulation:

- Phase One: Data collection
- Phase Two: Design and development
- *Phase Three:* Trial and refinement

Phase One: Data Collection

Physical aspects of the firefighter task:

- Brad has talked about this
- Will use physiological parameters to assess fidelity
- Designed to mimic workload and work tasks

Phase One: Data Collection

Cognitive aspects of the firefighter task:

- Modified applied cognitive task analysis
- Selected simple tasks that can be done in the simulation
- Option to include communication and situational awareness

Phase Two: Design and Development

Design and Development is done:

- Validation of physical task battery completed
- Cognitive tasks well-established in laboratory settings

Videos reviewed by stakeholders including experienced volunteer firefighters

Phase Two: Design and Development

Phase Three: Trial and Refinement

Timing, validity, reality

- All test batteries piloted in two sites
- Videos reviewed by firies and Human Factors specialist
- Feedback provided by volunteer firies and changes made to ensure fidelity is maximised

Refinement ongoing

Option of using this down the track for more testing (IMT etc) and also for training and assessing FFD

PROJECT CONTACTS

Program Lead

Brad Aisbett

brad.aisbett@deakin.edu.au

Project Lead

Sally Ferguson

sally.ferguson@unisa.edu

Lead End-User

Robyn Pearce

robyn.pearce@fire.tas.gov.au