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Abstract: Soil erosion events following fire can wash sediment and ash into streams and reservoirs, 
contaminating water supplies for cities and towns. These risks are real, yet difficult to quantify, constraining 
the optimal selection of preventative and remedial options such as prescribed burning and investment in 
water treatment infrastructure. Non-stationary climate and fire regimes resulting from climate change add to 
this difficulty. What is the chance of a water supply becoming unusable due to fire? Will this increase with 
climate change? Will prescribed burning increase or decrease this risk? Answering these questions is 
challenging because both fire and rainfall regimes are already complex processes to model individually. 
Considering the interaction between these two processes substantially increases the complexity of the 
modeling problem.  

The model outlined in this paper is based on the premise that high-
magnitude erosion events following fire result from the spatial and 
temporal intersection of burnt areas and high-intensity rainfall events.  
In this new model we consider fires and storms as independent 
stochastic processes with properties of spatial extent, temporal 
duration, and frequency of occurrence. This is illustrated in Figure 1, 
where we have superimposed realizations of fire and storm processes. 
Here the (x,y)-axes give the spatial extent and the vertical axis gives 
duration. The volume of intersection of the two processes (shown by 
the overlap of the large and small discs)  gives a measure of hazard of 
high-magnitude erosion events, and we can quantify how it changes in 
response to changing fire and climate regimes. 

Let the set  represent the catchment for a single year, then we are 
interested in the “risk set” 

  

Here  has dimensions . The duration of a fire is the 
time it takes for the vegetation to recover (a couple of years), rather than the time the fire is active (a couple 
of days). The volume of , that is , represents the annual area where burn and rainfall satisfy the 
conditions required for high-magnitude erosion events to occur in a catchment where post-fire response 
thresholds are known. Let λ = fire event rate (per unit area and unit time); μ = storm event rate (per unit area 
and unit time); α = E||fire event|| (in ); and β = E||rainfall event|| (in ). Given these 
definitions, we use the mathematics of coverage processes to show that 

  

In addition to deriving this result we obtain estimates for , ,  and , and consider the effect on  of 
changing these parameters. 
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1. INTRODUCTION 

Erosion events following fire can wash sediment and ash into streams and reservoirs, contaminating water 
supplies for cities and towns (Nyman, et al., 2011, Smith, et al., 2011). These risks are real (e.g. White, et al., 
2006) yet difficult to quantify, constraining the optimal selection of preventative and remedial options such 
as prescribed burning and investment in water treatment infrastructure. Non-stationary rainfall and fire 
regimes resulting from climate change add to this difficulty. What is the chance of a water supply becoming 
unusable due to fire? Will this increase with climate change? Will prescribed burning increase or decrease 
this risk? 

A key element of this problem involves capturing the nature of the interaction between the causes: fires and 
rainfall events. The frequency and size of fires is highly variable, depending on climatic conditions in a 
particular year. Following fire we have a “window of risk” (Prosser and Williams, 1998) for several 
years within which severe erosion events may occur, depending on whether a storm event of sufficient 
magnitude occurs within the burnt areas. When a storm does occur in a burnt area, the magnitude of the 
erosion event is dependent on the landscape vulnerability, which comprises many factors including soil 
properties, topography, fire severity (hydrological perturbation) and level of recovery. Over time, the 
frequency and magnitude of impacts on water resources is a function of cause (fire and storms) and landscape 
vulnerability. 

Fire and erosion are frequently modeled separately. In a few cases erosion modeling efforts have been 
specifically targeted at burnt landscapes (Cannon, et al., 2010, Robichaud, et al., 2007), though with the focus 
on predicting erosion rates after the landscape has been burnt, rather than assessing the combined impact of 
fire and rainfall on erosion. To our knowledge, Istanbulluoglu, et al. (2004) is the only existing attempt at 
modeling long term fire related erosion rates which incorporates stochastic fire and rainfall events. In their 
model, temporal dynamics of vegetation coverage and soil depth are modeled in some detail, but spatial 
variation is ignored. 

The physical modeling of fires, rainfall and subsequent erosion events is potentially a very complex 
undertaking, requiring detailed deterministic fire and erosion models with many parameters and time-series 
of forcing inputs. Application of this modeling approach across landscapes is constrained by the availability 
of the high-resolution data required to fit the models. The deterministic representation of fire and erosion 
processes can result in very high epistemic uncertainties, due to the large number parameters and modeling 
steps. These uncertainties in turn can obscure the effects of key elements within the system, such as the 
frequency of fire and rainfall events. 

In this paper we ask the question, “What is the first-order effect of the interaction between fires and storms?” 
When assessing changes in risk as a result of different fire regimes and/or climate change, we argue that the 
most important property of the system is the “volume” of the intersection in space and time of burnt areas 
and storms.  The modeling focus should therefore be directed at the overlap between fire and storm events, 
rather than at the geophysical processes that drive them individually. We propose a novel method to quantify 
the size of this intersection as a function of the regional fire regime and the local rainfall properties. We then 
apply the model to SE Australia to illustrate how parameters can be obtained from readily available data on 
fire and rainfall regimes.  

2. THE MODEL  

2.1. Model development 

The term coverage process refers to any stochastic process consisting of a number of sets, usually in some 
Euclidean space , where we are interested in the volume of some fixed set  which is covered by these 
random sets. A particular type of coverage process is the germ-grain model, in which the random sets are 
generated by taking a Poisson process (the germs) and then at each point centering iid random sets (the 
grains). 

Our model uses two independent germ-grain processes, one for storms and the other for fires. Our space will 
be , where the first two dimensions are space ( ) and the third is time (years). The set  represents the 
catchment for a single year, and we are interested in the “risk set” 

  (1) 

Here  has dimensions . Our fire process will model fire events as patches of disturbance, and 
our storm process will model high-intensity storm cells, the combination of which is known to have the 
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potential to cause high-magnitude erosion events. Here the duration of a fire is the time it takes for the 
vegetation to recover (a couple of years), rather than the time the fire is active (a couple of days). (So the fire 
duration is really the fire recovery time.) Thus we can interpret the volume of , that is , as the erosion 
hazard due to the overlap between storms and burnt areas. 

We need some notation to describe our storm and fire processes 

 λ = fire event rate (per unit area and unit time) 

 μ = storm event rate (per unit area and unit time) 

 α = E||fire event|| (in ) 

 β = E||rainfall event|| (in ) 

Given these definitions, our main result for this section is that 

  (2) 

Note that this formula only requires the expected size and rate of fires and storms, and does not depend on 
their shape. We will use this result to explore the impact of changing fire and storm behaviour on high-
magnitude erosion events. 

It is also possible to say something about how variable  is. Let  be a typical fire event centered at the 
origin, and  a typical storm event centered at the origin (recall that we model fire and storm events as iid 
sequences). Define  and , where  is just the set 
obtained by adding  to each element of . Note that while  does not depend on the shape 
of ,  does when . We have 

 
 (3)

 

Proofs for these results appear in the appendix. 

Before we consider the problem of estimating , ,  and , it is worth collating the assumptions inherent in 
our model, and some of their implications. 

2.2. Model assumptions 

1. fire and rainfall events are independent of each other 
2. fire and storm sizes/shapes are both iid 
3. fires and storms are uniformly distributed in space 
4. the rate at which fire and storm events occur is constant 

 
For Assumption 1 we need to consider dependence in time and space. At the time scale of the model, 
temporal independence between fires and storms is reasonable. While the fire is actually burning it may 
affect local precipitation, but this is only a short term effect compared to the time for which burnt landscape 
is susceptible to erosion events. Perhaps more important is dependence caused by the geography, which will 
effect patterns of burning and precipitation. This dependence will effect the shape of fires and storms (grains) 
as the degree of burning or intensity of rainfall may be different upslope or downslope, for example. There 
will also be large scale (germ) effects on the location of fires (more frequent in mountainous areas, for 
example) and storms. By ignoring large scale effects, we are assuming that the catchment area is 
topographically homogenous (which is not to say flat, but the same type throughout). This means that our 
fitted model parameters will be specific for the type of catchment being modeled. Local geography could 
affect the intersections of fires and storms. Practically, ignoring such affects means that our risk measure, 

, could also have a local component, in that the rate at which risk is converted to actual erosion events 
depends on the type of landscape the catchment is situated in. 
 
Assumption 2 is saying that the local geography is homogenous across the catchment, so that the shapes of 
fires or storms are statistically similar from one end to the other. Independence of the grains also means that 
fires/storms do not interact if they overlap in space and time. Clearly this is not the case, but it is not a 
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problem in practice, as we are ultimately only interested in the union of all burnt/stormy areas. Assumption 3 
is saying that there are no large scale differences in weather/vegetation patterns across the catchment.  
 
Assumption 4 is about seasonality. That is, we are supposing that there are no seasonal patterns in fire and 
storm events. This is clearly not the case, but we argue that the model will still give useful results. The reason 
is that burnt areas remain susceptible to erosion events for a long period of time, in the order of a couple of 
years. Thus, even though there will be seasonal patterns to fires, storms and high-magnitude erosion events, 
we can in effect spread them out over the year. The practical implication is that we need to ensure that the 
rates we use for fires and storms are annual rates. 

2.3. Model parameters 

Rainfall. Germ-grain models can be used to represent storms as discs with random intensity, size, velocity 
and duration (Cox & Isham, 1988). More accurate models use clusters of disks as the grains (Cowpertwait, 
1995), and can be extended to accommodate orographic effects (spatial nonstationarity) and seasonality 
(temporal nonstationarity) (Burton, et al., 2010). However these models require detailed information on the 
spatial and temporal distribution of rainfall over long time scales, in order to be parameterized and tested. In 
our case this data is currently unavailable and we therefore derived rainfall parameters using data from the 
Australian Bureau of Meteorology (BoM). 

Let  be the rainfall intensity at time  and spatial co-ordinates , and define, for duration  (in 
) and area , 

 
 (4)

 

That is,  is the average rainfall intensity at  over the time period , and 
 is the rainfall intensity averaged over the time period  and over the area . Note that 

here  is the area of , rather than the volume. Let  and  denote randomly sampled 
values of  and . Let  be a frequency (in ), and  an area centered at , then the 
BoM provides functions  and  such that 

  (5) 

 are called rainfall intensity-frequency-duration (IFD) curves (Figure 2a) and  is called a depth-area-
reduction factor (DARF) (Figure 2b).  

 

 

Figure 2. a) Intensity-frequency-duration curves for Bright, northeast Victoria (source: Australian Bureau of 
Meteorology). The 30-minute intensity threshold is shown by the red dashed line. b) Depth area reduction 
factor (DARF) for convective thunderstorms derived from radar data (Olivera, et al., 2008) (Texas) and 
(Curtis, 2011) (Colorado).  

Debris flows in the eastern Victorian uplands are triggered by rainfall events with a 30-minute rainfall 
intensity of at least 35 mm h-1 (Nyman, et al., 2011). Thus for the model we restrict our attention to 30-minute 
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storms that exceed this intensity threshold. Storm duration  is therefore constant, and when expressed in 
years we get . Intense storm cells tend to be small, so we take an area of size 

. Thus the frequency of these events, , satisfies 

 . (6) 

This gives  and thus  and . 

Fire. If you ignore the shapes of grains in a germ-grain model and just look at their size, you get a compound 
Poisson process, and these can be found in the literature as fire models (Podur, et al., 2010). We use historical 
fire data from Victoria (VIC, 1072-2009) to test the assumptions underlying the compound Poisson model, 
and estimate the rate  and mean size  of fires. Note that the data is confined within state boundaries, which 
are arbitrary in the context of fire regimes. Preferably the fire regimes should be quantified for homogenous 
landscape units or eco-regions.  

Within fire seasons the interarrival times for fires in Victoria were exponentially distributed (Figure 3a). The 
distribution of fire sizes displays power law behavior (Figure 3b). This suggests a Pareto distribution, though 
note that two or three parameter Weibull distributions have also been found to fit fire size data (Cui and 
Perera, 2008). We restricted the fires to those greater than 100 ha in size, as smaller fires are usually not 
intense enough to trigger high-magnitude erosion events. For these fires the rate of occurrence was 

 and  for Victoria and the Australian Capital 
Territory respectively, highlighting the regional difference in fire regimes. Wildfires in the Australian Capital 
Territory are on average smaller and more frequent than in Victoria. The average size of Victorian bushfires 
over 100 ha was . Using a duration of two years (the time it takes the landscape to recover), we get 

. 

 

Figure 3. a) Inter-arrival time distributions for 1040 fires > 100 ha in Victoria. The arrival time was 
calculated from the start of one fire to the start of the next fire within fire seasons. b) The fire size-frequency 
distribution for Victoria (VIC) (1972-2009) and Australian Capital Territory (ACT) (1936-1999). 

3. DISCUSSION 

Fire and rainfall processes operate in the landscapes to produce a mosaic with erosion events occurring as 
“episodic patches of activity” (Miller, et al., 2003). Under this description, the patches are determined by 
intersection between storms and burn areas, and the activity (erosion) is determined by landscape attributes 
and the sensitivity to fire impacts. If the aim is to predict the likelihood of water quality impact following fire 
then the modeling effort should focus on activity (erosion) and how this changes with different rainfall inputs 
and fire severities. If the aim is to quantify risk within a catchment in context of, for example climate change, 
then the focus should be on the interaction between storms and burn areas.  

In this paper we have shown how coverage processes provide a powerful framework within which the 
interaction of burnt areas and storms can be quantified. The expected area of intersection  is a measure 
of hazard that is independent of the landscape vulnerability and the sediment transfer processes that occur 
following fire. It represents the average annual area ( ) where fire and rainfall satisfy the 
conditions known to be required for high-magnitude erosion events to occur in a particular landscape. Under 
this representation, the total risk is a function of both the hazard (patches or intersections) and the 
vulnerability (erosion and sediment transfer processes). Here, we were specifically interested in debris flows 
in Eucalypt forest of SE Australia and therefore used a known 30-minute rainfall threshold for post-fire 
debris flow initiation as a measure of vulnerability. Other thresholds may apply for different environments 
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and processes. The strength of the model is that it provides a relative measure of hazard which responds 
directly to changes in fire disturbance and rainfall regimes. 

A risk model expressed in this form has a number of obvious applications. To quantify the effect of climate 
change on the risk of high-magnitude erosion events, we need to quantify the effect of climate change on , 

,  and . A possible approach is to model the size and frequency of fires (and possibly also storms) as a 
function of the average annual temperature (or some other temperature based measure of fire hazard), which 
we can then project forward. 

Another immediate application of the model is to quantify the effect of controlled burns. That is, we consider 
fires to be either small prescribed burns or large wildfires. As we increase the frequency of prescribed burns 
the frequency of wildfires will reduce. Provided we can quantify the relative frequencies of prescribed burns 
and wildfires, we can use the model to quantify the change in the risk of high-magnitude erosion events. 

Finally we remark that the random sets we use in our germ-grain models for fires and storms can be very 
general. In particular, by thinking of them as higher dimensional objects we can include information such as 
the intensity of a storm, or the severity of a fire. We can even model recovery from fire disturbance by 
allowing the severity to decline over time. 
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APPENDIX 

Suppose that we have two independent Boolean models in . That is, let  and  be independent 
stationary Poisson processes with intensities  and , and let  and  be mutually independent i.i.d. 
sequences of random sets, then our two models are  and . Let  be a Borel 
subset of  then the intersection of ,  and  is given by . Let  
denote the content (Lebesgue measure) of , then we have: 

Proposition 
If  then , where  and  are random sets, distributed 
as the  and  respectively. Moreover, let  and , then 

 
 (7)

 

Proof 

Let , then from Hall (1988) Equation (3.4) 

we have 

  (8) 

Note that the result still holds when  or . 

For the variance we note first that 

 
 (9)

 

From Hall (1988) Equation (3.6) and preceding calculations 

 (10) 

Thus 

  (11)
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