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Capability vs. Needs

o Capability: Rothermel (1972) —
surface fire model
— Basis of dozens of fire behavior systems

* Needs: crown fires (& shrub & grass)
— Live canopies
— “Discontinuous”
— Spread thresholds
— Require wind/slope etc. to burn
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. Assumptions in Rothermel 1972

— Continuous fuels

— Steady state spread, flames steady
—‘shallow’ fuel beds (<30 cm)
—Depends on presence of dead fuel

— Extinction by assigning maximum
moisture content

—Fuel beds must burn w/o wind-slope
(w/s effect multiplied)

Realizations

Can’t simply extend semi-empirical Rothermel
model — no theory, no data

Considerable research assuming radiation
dominated spread, surface and crown fire

Must completely rethink the approach to fire
spread
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Our observations (and the literature) suggest
that convection (flame contact), particularly
from non-steady flame flow, significantly
contributes heat for fire spread.

Examination of Assumptions

Non-steady
Flame

(common condition)

. Non-steady
— flphe—"

I ———
B v

Rothermell and Antderson 1966,

— Ll

Figure 6.--Flame size in ponderosa pine needles at 704 ft. /min, airspeed,




Research Target
Fuel Discontinuous — gaps of similar
order in size as fuel “clumps”
Fuel Deep — vertical dimension not
negligible
Fuel Vertically arranged -no surface fuel

Thresholds spread -- Depends on wind,
slope, moisture, & fuel geometry for any
spread at all
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Fons, W. L. 1946. Analysis of Fire Spread in Light Forest
Fuels. Journal of Agricultural Research 72:95.




Small-Scale Models
Laminar flame structure

Beer, T. 1995. fire Propagation in
Weber, R. O. 1990. A Model for Fire Vertical Stick Arrays: The Effects of
Propagation in Arrays. Mathmatical Wind. International Journal of
Computation Modelling 13:95-102. Wildland Fire 5:44.




~ Laboratory Setup

Rows of “deep? | ’ '
Variables: |
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8-second accumulation
of flame presence
(>550C) (1/120" sec.)
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Flame Presence & Absence
Total Time 8 seconds (120Hz)
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RMRS

Results: Flame Geometry & Statistics

A

* Fuel row ignited by flame contact near the top
of the fuel bed

* Burned from the top-down, curved profile
- XY, XZ

* Flame edge not stationary
— Gaussian distribution
— Higher variance with height

— Fuel particles experience intermittent flame bathing
prior to ignition
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Thresholds

similar slope —
S fuel bed tilt angle
had same effect
where max flame
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RMRS Flame/Fuel Geometry
on Fuel Bed Depth

Shallow Fuels Deeper Fuels




Flame/Fuel Geometry
on Slopes
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.o Strbng role o-f e/ﬂgge%it eomegz[y InSIde fuel bed
(jUSt like toothﬁlcks & mataches — but not Iamlnar
ﬂame edge) L o ‘

. Bulk fuel propertles a’Ioﬁe not meaningful to0
spread/n@aSpread (i.e. bulk density, cover)
— Gap 3|zes critical to spread & varlablhty
— What' = not thereis as |mportant as what is there

» Fuel bed depth is qa.c.r‘lrg.lcal independent factor
_ (beyond effects on packing)

Irnplicaiions for Maocdaline
lgnition and fire spread stochastic=—
the fiunctien ol a conditional prelkakblity:

« The probability el the fuel characterstics—
presence and attributes,

s Therprehab)lit/ofithetame aitributes
particuladysiame; contact (determined 19y,
‘Intemal’iactorsand external factorsilikeawind
variabjlity):

o Fire Is a sampling precess—Iit samples ier the
Ignition requirements:
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