

Capability vs. Needs

- Capability: Rothermel (1972) surface fire model
 - Basis of dozens of fire behavior systems
- Needs: crown fires (& shrub & grass)
 - Live canopies
 - "Discontinuous"
 - Spread thresholds
 - Require wind/slope etc. to burn

Assumptions in Rothermel 1972

- -Continuous fuels
- -Steady state spread, flames steady
- 'shallow' fuel beds (<30 cm)
- Depends on presence of dead fuel
- Extinction by assigning maximum moisture content
- Fuel beds must burn w/o wind-slope (w/s effect multiplied)

Realizations

- Can't simply extend semi-empirical Rothermel model – no theory, no data
- Considerable research assuming radiation dominated spread, surface and crown fire
- Must completely rethink the approach to fire spread

Observations of Fire Spread

- Particles < pilot ignition temperature (~320 C, 608F) when flame gets there – must have flame contact (visible flames)
- Heating rate same for all fires (Latham)
- Radiation shield experiments

Examination of Assumptions

Our observations (and the literature) suggest that convection (flame contact), particularly from non-steady flame flow, significantly contributes heat for fire spread.

> Steady Flame

Non-steady Flame (common condition)

Research Target

- Fuel Discontinuous gaps of similar order in size as fuel "clumps"
- Fuel Deep vertical dimension not negligible
- Fuel Vertically arranged -no surface fuel
- Thresholds spread -- Depends on wind, slope, moisture, & fuel geometry for any spread at all

- Fuel row ignited by flame contact near the top of the fuel bed
- Burned from the top-down, curved profile
 XY, XZ
- Flame edge not stationary
 - Gaussian distribution
 - Higher variance with height
 - Fuel particles experience intermittent flame bathing prior to ignition

Conclusions

- Strong role of flame/fuel geometry inside fuel bed (just like toothpicks & matches – but not laminar flame edge)
- Bulk fuel properties alone not meaningful to spread/no-spread (i.e. bulk density, cover)
 - Gap sizes critical to spread & variability
 - What's not there is as important as what is there
- Fuel bed depth is a critical independent factor (beyond effects on packing)

Implications for Modeling

Ignition and fire spread stochastic—the function of a conditional probability:

- The probability of the fuel characteristics presence and attributes,
- The probability of the flame attributes
 particularly flame contact (determined by
 "internal" factors and external factors like wind
 variability).
- Fire is a sampling process—it samples for the ignition requirements.

Wind Tunnel Burn

