

Outline 1. General background on inventories 2. Timeseries of emissions 3. New developments in IPCC methodology 1. Adds a new dimension: TIME

Range of Inventories Total accounting- all sources and sinks (natural and anthropogenic) Anthropogenic emissions inventories Air quality (air pollutants (CO, NOx, VOCs, aerosols, air toxics, POPS etc) Corinair National Pollutant Inventory Greenhouse gases (CO₂, CH₄, N₂O, PFC, CO, NOx, VOCs) IPCC Country specific Special purpose: detailed highly resolved activities Mitigation accounting e.g. farm/industry inventories Carbon credits/carbon offsets

Background (1) IPCC/UNFCC Inventories Anthropogenic Emissions associated with human activity NOT natural emissions Time base - annual Area-base - national Gases Direct i.e. Infra red absorbers (CO₂, CH₄, N₂O, PFC) Indirect -> Ozone (CO, NOx, VOC) Emissions weighted by GWP (CH₄=21; N₂O=310; CO₂=1)

Emission = Fuel burned x emission factor

 $Fuel_{burned}$ = Area x fuel load x combustion efficiency

Ideally:

- Fire areas (time resolved)
- Fuel loads (regional)
- Burning efficiencies (seasonal, regional)
 - patchiness, fuel classes
- Emission factors (seasonal, regional)
 - Fire intensity (i.e oxidation efficiency)

In practice:

CSIRO etc

annual, state means, global parameters

Fuel loads Woodland -Central Arnhem Land (Russell-Smith et al.) %total Fuel load (t ha⁻¹) Forest type area Fine Coarse Heavy fuel fuel Shrub fuel Eucalypt open 1.3 forest 6% 5.9 18.9 0.6 Eucalypt open woodland 3.9 1.1 4.0 0.9 52% Sandstone woodland 20% 6.0 1.0 12.9 0.6 Sandstone heath 23% 0.4 0.7 Weighted mean 4.4 0.9 6.6 0.8 Forests: Review by Kevin Tolhurst (~1991) of measured fuel loads from forestry departments, forest research in Universities,

Supplemented by newer studies as they become

			Burning efficiency			
Woodland -Central Arnhem Land (Russell-Smith et al.)						
	%	Patchiness	Pyrolysis efficiency			
				Coarse		
NUMBER 313			fuel	fuel	fuel	Shrub
Early season	5%	0.71	0.70	0.03	0.05	0.45
Mid season	20%	0.8	0.70	0.03	0.05	0.45
Late season	75%	0.84	1.00	0.25	0.25	0.75
weighted mean		0.83	0.92	0.19	0.20	0.67
-						
Fine Fuels DF 0	76 Coal	se woody fuels:	- n 24			

