The Eyre Peninsula Fire of 11 January 2005: an ACCESS case study

www.cawcr.gov.au

Melbourne, 2 September 2013

Acknowledgements

Co-authors

Will Thurston, Jeff Kepert and Kevin Tory
 High Impact Weather Research
 Weather and Environmental Prediction
 The Centre for Australian Weather and Climate Research
 Docklands, Victoria

Thanks to

- The Earth System Modelling group in CAWCR
- Bushfire CRC for partial funding of this work

What are we trying to do?

- Investigate the capability of ACCESS to model severe weather situations at high resolution (Grid Spacing ~ 1 km) and very high resolution (Gr Sp < 1 km)
 - looking well beyond what is currently operationally achievable (Gr Sp ~ 4 km)
 - computer run times, data volumes
 - dry weather fires (✓), dust storms (✓); wet weather (?)
 - how good is the model at these resolutions?
 - verification issues, observational data availability
 - does the high-resolution modelling lead to an increased understanding of what happened on the day?
- Explore the possibility of having a 'rapid turn-around' post-event research capability
 - to look at severe weather events soon after they occur
 - to help us understand what happened and why
 - ... at least some of the time

How do we validate the simulations?

- By comparing the simulations against
 - surface observations
 - one-minute and thirty-minute automatic weather station (AWS) observations as available in the computational domains
 - upper-air observations
 - radiosonde and wind-profile balloon-flight observations as available in the computational domains
 - radar data
 - where available (minimal for EP too far away from existing radars)
 - satellite observations
 - visual, infra-red imagery
- None of these observational data are assimilated into the model simulations, so the simulation can be validated against completely independent data.

What aspects of the modelling can we verify?

- timing of the main wind change on 11 January 2005
- forecast maximum temperature
- forecast maximum wind speeds
- upper-level temperature and moisture
- features observed in the radar and satellite imagery if available

Eyre Peninsula: what happened

- familiar set of summer-time meteorological ingredients
 - · high-pressure system in Tasman Sea
 - · approaching cold front with prefrontal trough
 - fire started mid-afternoon on 10 January 2005
 - a significant wind change crossed the fire ground late morning / early afternoon on 11 January
 - warm N to NW winds replaced with cool S to SW winds
- dry slot seen in satellite imagery Mills (2008) AMM 57 299-309
- 9 dead, > 100 injured, > 40,000 stock loss

Model configuration

- multiple initialisations
 - 2005-01-09 0000 UTC (1030 CDT)
 - 2005-01-10 0000 UTC (1030 CDT)
 - 2005-01-10 0600 UTC (1630 CDT)
 - 2005-01-10 1200 UTC (2230 CDT)
- ERA-Interim global initial condition
- 50 vertical levels (up to about 60 km)
- Five levels of nesting
 - global, large regional (0.11°), 0.036°, 0.012°, 0.004°
 - one-way nesting from coarser resolution to finer resolution
- Fire not modelled
 - no feedbacks from fire to meteorology

Primary wind change on 11 January 2005

= automatic weather station (AWS)

Wind-change isochrones every half-hour as analysed (BoM 2005) and simulated (0.012° grid spacing) from 11:00 to 14:00 EDT on 11 January 2005. Timing errors are less than 1 hour.

Bureau of Meteorology 2005: Meteorological report on the Wangary and Black Tuesday Fires: Lower Eyre Peninsula, 10-11 January 2005

AWS verifications

018191 Coles Point (0.012° Gr Sp, 0000UTC initialisation)

- good timing of maximum temperature
- good wind directions
- peak 10-metre wind speeds a little underforecast

AWS verifications

- forecast wind change about 40 minutes early
- peak wind speeds underdone
- evening temperatures on the 11th very well done
- two significant dry slots in observations on the 11th not adequately forecast

Animations

1600 UTC 10 Jan to 0900 UTC 11 Jan 0230 CDT 10 Jan to 1930 CDT 11 Jan

0.004°-grid-spacing

Animations

1600 UTC 10 Jan to 0900 UTC 11 Jan 0230 CDT 10 Jan to 1930 CDT 11 Jan

0.004°-grid-spacing

Vertical cross-section of the wind change

along the orange arrow. Sea-level to 330.0 6,000 metres. Colours show potential temperature in Kelvin. Black (grey) contours show positive 310.0 (negative) vertical velocity in 1.5 m/s intervals. From the 0.012°-grid-spacing simulation.

0.004°

potential temperature = pressure-adjusted temperature

0.012°

138°E

133°E

Vertical cross-section of the wind change

Cross-section moving along the orange arrow. Sea-level to 330.0 6,000 metres. Colours show potential temperature in Kelvin. Black (grey) contours show positive 310.0 (negative) vertical velocity in 1.5 m/s intervals. From the 0.012°-grid-spacing simulation.

> 0.004° 0.012° 133°E 138°E

potential temperature = pressure-adjusted temperature

CSIRO

Grass Fire Danger Index (Mark 5)

- FDI > 40 over fire ground
- areas of elevated FDI behind the change
- wakes from the coastal topography in post-change flow
- features reminiscent of Black Saturday further up the EP
 - small-scale vortices on the wind change
 - pre-frontal boundary-layer rolls (visible in sat. imagery over western Victoria)
 - very high FDI associated with these features

Summary

- Meteorology of LEP fire (10-11 Jan 2005) modelled at very high resolution with ACCESS
- Familiar summer-time synoptic situation
- Validation against independent data yields good results, although dry slot missed
- Elevated FDI values behind the change
- Interesting similarities to Black Saturday further up the Eyre Peninsula
 - although bore transition is "opposite"

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Robert Fawcett
High Impact Weather Research

Phone: 03 9669 4296

Email: r.fawcett@bom.gov.au

Web: www.cawcr.gov.au

Thank you

www.cawcr.gov.au

