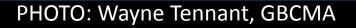


Predicting post-fire erosion under variable fire regimes


<u>Petter Nyman</u>, Gary Sheridan, Owen Jones & Patrick Lane University of Melbourne & Bushfire CRC

Rose River uplands, Dec 2007


PHOTO: John Knocks, Local Farmer

Wellington River, Feb 2007

Upper Goulburn River, July 2009

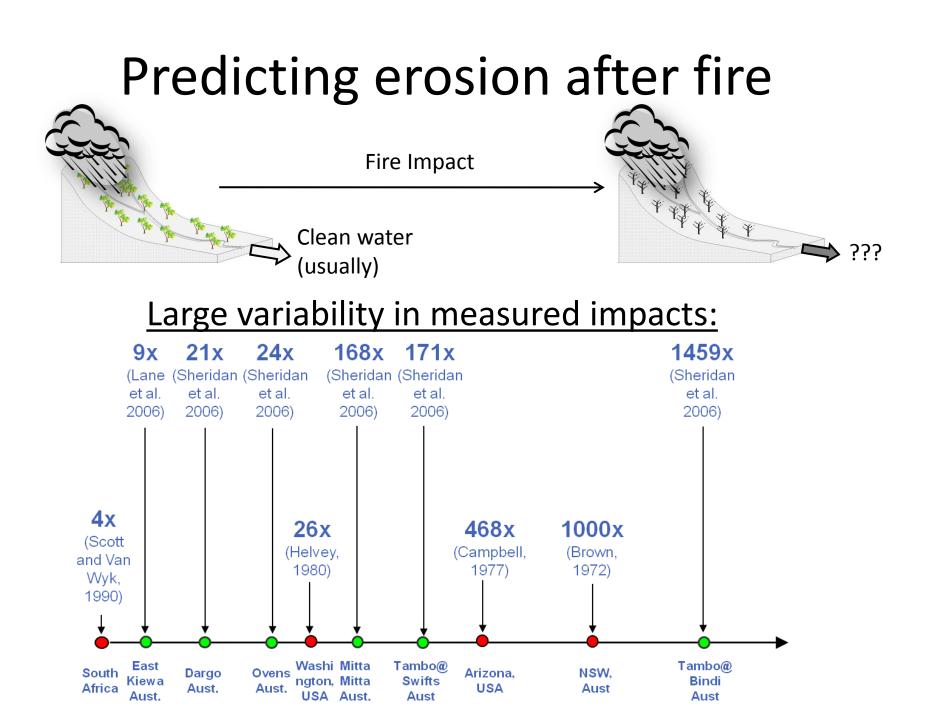
Wildfire Erosion events		Catchment	Management response (water supply system)	
	Debris flow	Ovens, Victoria	 Boil water notices Increased water restrictions (level 4 of 4) 	
2003	Flood/debris flow	Cotter, ACT (Canberra)	 Switched supply (1 yr); Water restrictions; New treatment plant (\$38 Mil) 	
2006-07	Debris flow	Ovens, Victoria	Boil water (6 months),New treatment plant	
2000-07	Debris flow & flood	Macalister, Victoria	 Increased water restriction level; Water carting (Feb - Sep 07) 	

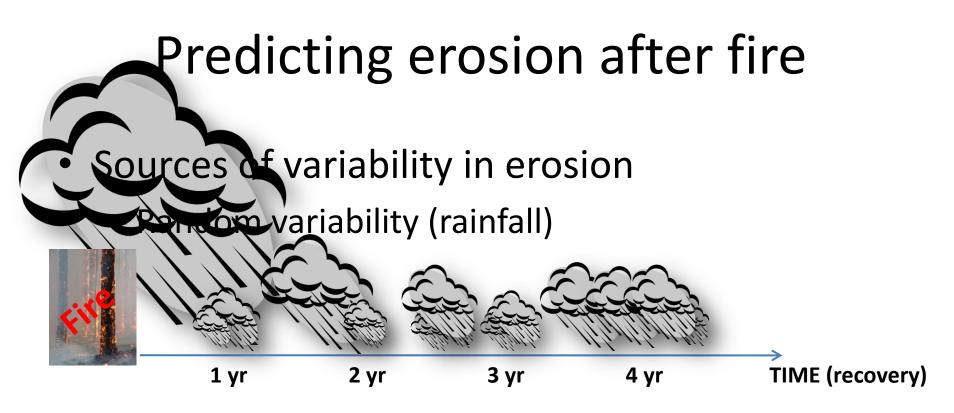
Management questions...

Sources of water quality impacts?

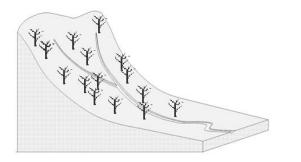
How much? How often? Where?

Effects of different fire regimes?


Outline


- Prediction challenges and existing tools.
- High magnitude events and risk \rightarrow Debris flows
- Shift in focus: magnitude \rightarrow frequency
- Predicting and measuring frequency
- Conclusions

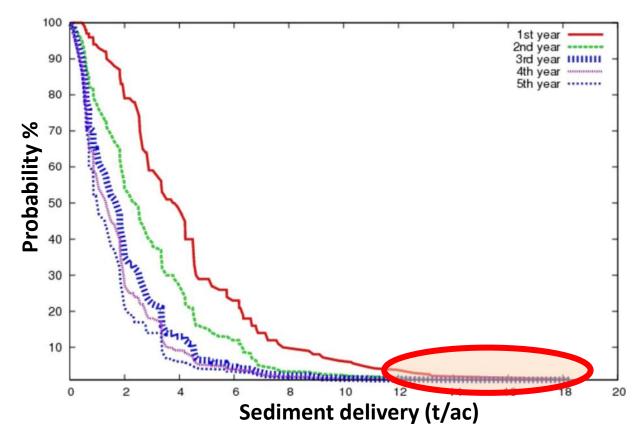
Predicting erosion after fire



Deterministic variability (landscape properties)
 e.g. Slope

Predicting erosion after fire

USLE (Universal Soil Loss Equation)


- Predicts average annual hillslope erosion
- Using data from long term erosion monitoring

Annual soil loss (t/ha/year) = R x K x L.....

Predicting erosion after fire ERMiT (Erosion Risk Management Tool)

- Predicts sediment delivery from hillslopes in post-fire period
- Rainfall is a random variable

Main source of risk...

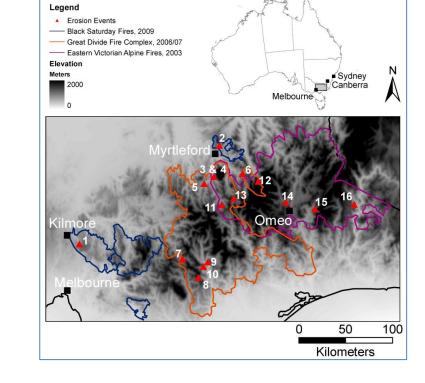
Most risk embedded in high magnitude events...where water quality thresholds are exceeded

High

Frequency

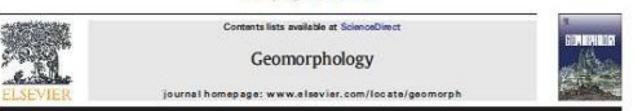
Low

1


10

100

Magnitude of events


1000

10000

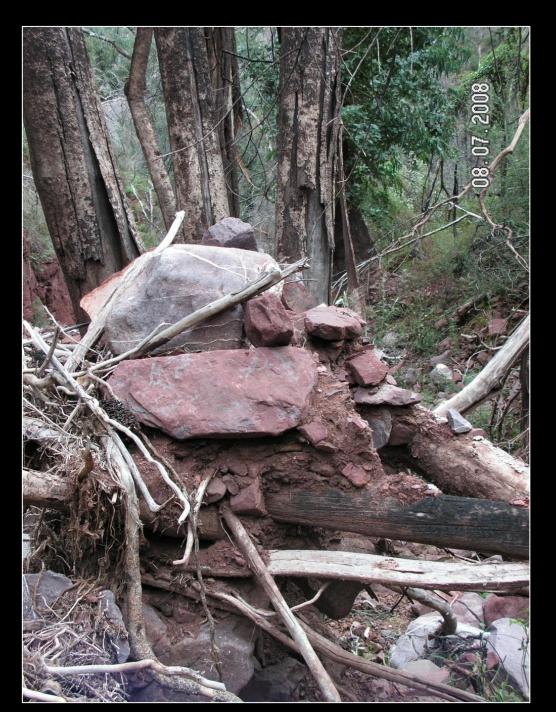
Debris flows, mud flows, flash floods...big problem...but how often?

Geomorphology 125 (2011) 383-401

Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia

Petter Nyman a.h.*, Gary J. Sheridan a.h., Hugh G. Smith a, Patrick N.J. Lanea

² Department of Forest and Ecosystem Science, The University of Melloume, Parkolik, Victoria 2010, Australia ^b eWater Cooperative Research Control, The University of Malbourne, Parkolike, Victoria 3010, Australia

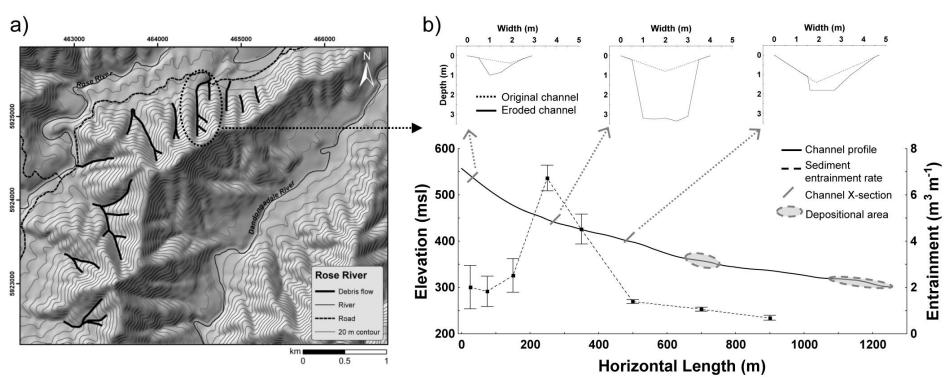

#	Site and Event Date	Location	Catchment size (ha)	Elevation (m)	Slope (degrees)	Fire Severity ⁵	Annual Rainfall (mm)	Geology	Ecological vegetation class (EVC)	Event type	Run-out length (L/H)
1	Sunday Ck, March 2009	N 5861774 E 334100	8-18	400-600	30% ≥ 25° 9% ≥ 30°	100% ≥ 2	800-1000	-Sedimentary (marine) mudstone & sandstone -Metamorphic derivatives	Grassy dry	Runoff generated debris flow	3.4
2	Myrtle Ck, March, 2009	N 5963909 E 479045	10-25	450-800	55% ≥ 25° 25% ≥ 30°	100% ≥ 2	1000-1200	-Sedimentary (marine) mudstone & siltstone -Metamorphic derivatives -Igneous granite & grandiorite	Heathy dry forest	Runoff generated debris flow	2.8
3	Yarrarabula 1 Oct, 2007	N 5931411 E 473200	10-90	300-800	54% ≥ 25° 25% ≥ 30°	95% ≥ 2º	1000-1200	-Sedimentary (marine) mudstone & siltstone -Metamorphic derivatives	Heathy dry forest	Runoff generated debris flow	3.4
4	Yarrarabula 2 Oct, 2007	N 5931411 E 473200	90-200	300-1400	41% ≥ 25° 24% ≥ 30°	98% ≥ 2°	1000-2000	-Igneous granite	Heathy dry forest ^a	Flash flood	n/a
5	Dec, 2007	N 5925691 E 464878	30-90	350-650	48% ≥ 25° 24% ≥ 30°	95% ≥ 2	1000-1200	-Sedimentary (marine) mudstone & siltstone	Heathy dry forest	Runoff generated debris flow	3.9
6	Oct, 2007	N 5935095. E 502684	30-100	450-1000	74% ≥ 25° 45% ≥ 30°	73% ≥ 2	1000-1200	-Sedimentary (marine) mudstone & siltstone	Heathy dry forest	Runoff generated debris flow	3.4
7	Unknown, 2007	N 5846104 E 440702	10-140	500-900	64% ≥ 25° 37% ≥ 30°	100% ≥ 2	1200-1500	-Sedimentary (marine) mudstone & siltstone	Shrubby dry forest	Runoff generated debris flow	-
8	Abberfeldy Unknown, 2007	N 5826790 E456970	-	1300	13% ≥ 25° 3% ≥ 30°	99% ≥ 2	1200-1600	-Sedimentary (marine) mudstone & siltstone	Montane wet forest	Mass-failure	-
9	, Feb, 2007	N 5843139 E 467165	70-350	250-1000	52% ≥ 25° 29% ≥ 30°	100% ≥ 2	800-1000	-Sedimentary (marine and fluvial) mudstone & sandstone	Heathy dry forest	Runoff generated debris flow	3.0
10	Feb, 2007	N 5838539 E 462910	100-350	350-850	36% ≥ 25° 10% ≥ 30°	100% ≥ 2	800-1000	-Sedimentary (marine) mudstone & siltstone	Shrubby dry forest	Runoff generated debris flow	3.3
11	Abbeyard, June, 2007	N 5902168 E 481366	-	500-900	62% ≥ 25° 25% ≥ 30°	99% ≥ 2	1000-1200	-Sedimentary (marine) mudstone & siltstone	Heathy dry forest	Runoff generated debris flow	-
12	January 2004	N 5926579 S 519300	130 - 250	650-1400	31% ≥ 25° 11% ≥ 30°	60% ≥ 2	1600-1800	- Metamorphic derivatives of sedimentary rocks -Igneous grandiorite	Montane wet forest	Flood event	n/a
13	Dingo Čk , Feb, 2003	N 5909223 E 493698	350-400	600-1200	76% ≥ 25° 48% ≥ 30°	96% ≥ 2	1200-1400	-Sedimentary (marine) mudstone & siltstone	Heathy dry forest	Runoff generated debris flow	3.8
14	Big River (Omeo), 2003	N 5904544 E 548026	~60	700-1000	42% ≥ 25° 15% ≥ 30°	100% ≥ 2	800-1000	- Sedimentary (fluvial) sandstone & siltstone - Igneous granite & grandiorite	Heathy dry forest	Runoff generated debris flow	-
15 ^d	Blueys Ck, 2003	N 5898006 E 577947	20-50	700-1000	70% ≥ 25° 37% ≥ 30°	96% ≥ 2	800-1000	- Sedimentary (marine) siltstone	Shrubby dry forest	Runoff generated debris flow	-
16 ^d	Suggan Buggan, 2003	N 5903000 E 618653	80-110	600-900	39% ≥ 25° 25% ≥ 30°	43% ≥ 2	600-800	- Sedimentary (marine) mudstone & sandstone - Igneous granite	Shrubby dry forest	Runoff generated debris flow	-

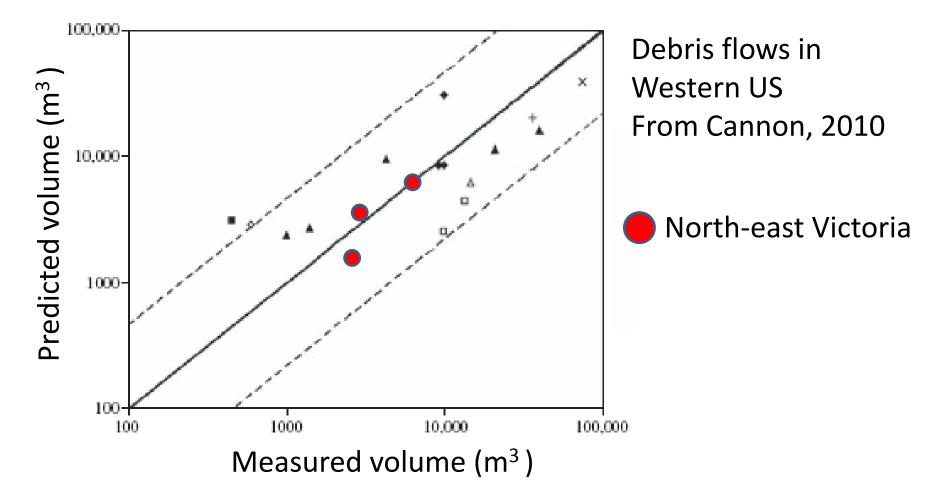

Lake Buffalo, Victoria 29th Oct 2007

Tawonga Gap, Victoria 28th Oct 2007

Licola, Victoria 21th Feb 2007

Buckland River Catchment, Victoria 26th Feb 2003


Licola, Victoria 21th Feb 2007


- Occur in steep headwater catchments
 - 30-minute rainfall intensity > 35 mm/h
- Single event >100t/ha
 - Extreme response = 100s of years of background erosion

Predicting debris flow magnitude

...Volume = ...+...slope +...burn area +...rainfall

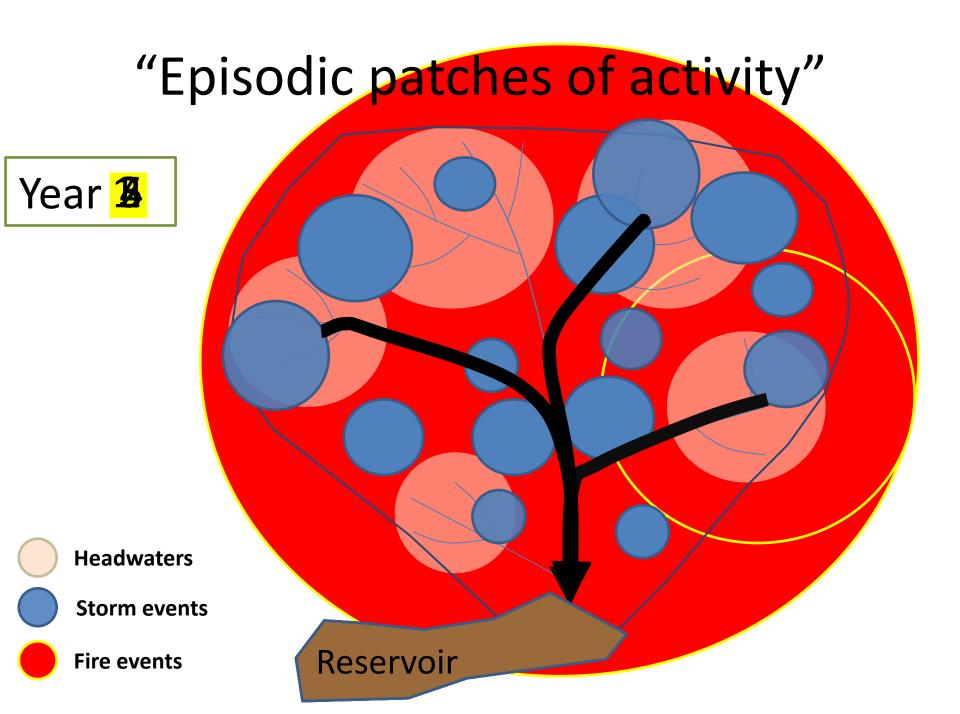
 $\ln V = 7.2 + 0.6(\ln A) + 0.7(B)^{0.5} + 0.2(T)^{0.5} + 0.3$

What about frequency???

From:

<u>To:</u>

Magnitude...



Is it big or small?

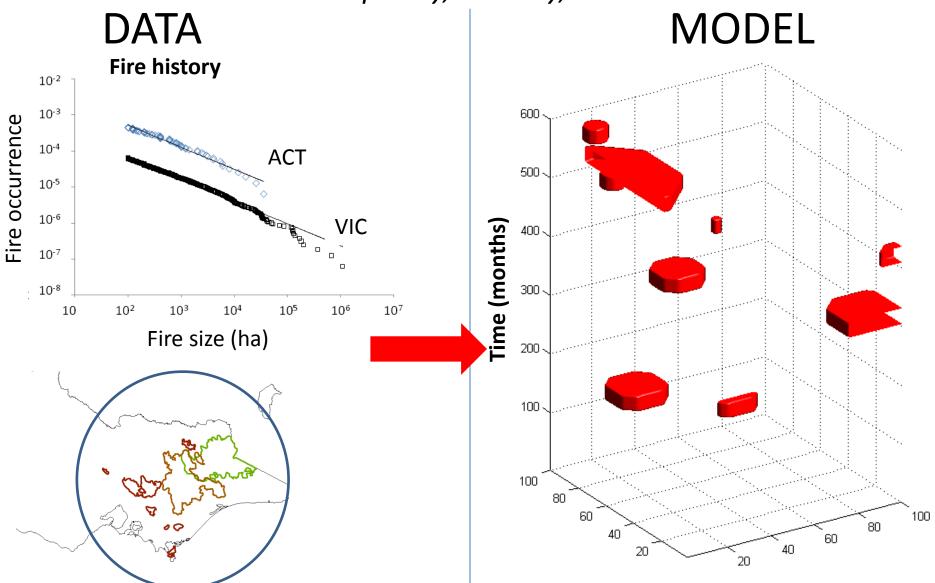
Frequency...

How often?

Rainfall

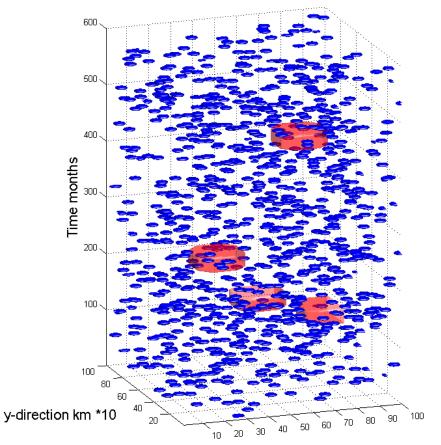
Frequency, Intensity, Storm Size

DATA


Intensity, frequency, duration

MODEL

Fire

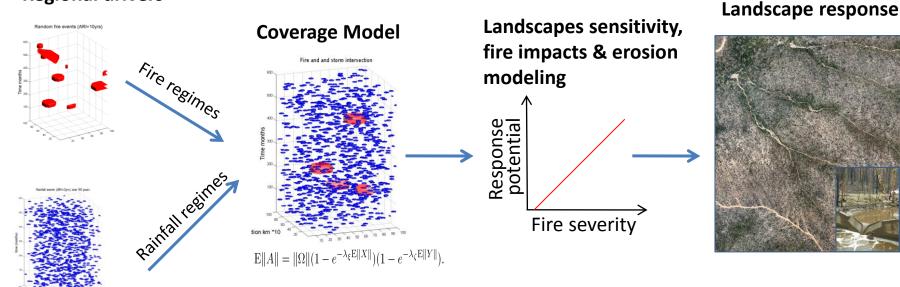

Frequency, Severity, Extent

Coverage Model...

Debris flows occur where high intensity fires and storms intersect with susceptible catchments

Fire and and storm intersection

$$\mathbf{E}\|A\| = \|\Omega\| (1 - e^{-\lambda_{\xi} \mathbf{E}\|X\|}) (1 - e^{-\lambda_{\zeta} \mathbf{E}\|Y\|}).$$


In order to use this model, need to know...

- 1. Rainfall thresholds
- 2. The frequency of rainfall > thresholds
- 3. The frequency of fires
- 4. The size of storms and fires

x-direction km *10

Modeling overview...

• Aim to develop a model which considers the risk to water quality within the context of variable fire regimes

Regional drivers

Landscape response (Field study)

... Frequency as a function of landscape attributes...

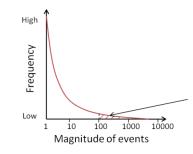
Stanley– March 2009

Kilmore – Murrundindi fire Feb 2010

20 Kilometers

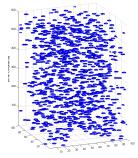
Landscape response (Field study)

... Frequency in relation to landscape attributes...

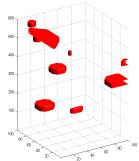

0 5 10 20 Kilometers

Debris flow affected catchments

Variable	Attribute	Debris Flows (%)
Topography	Slope>30 deg	90
	Slope<30 deg	10
Forest Type	Dry Forests	80
	Damp Forest	20
	Wet Forest	0
Rainfall	Intensity>30mm/h	100
	Intensity<30mm/h	0
Fire Severity	High	9
	Moderate	1



Summary



 Majority of risk embedded in a few large events e.g. Debris flows

- The question shifts from "How Big?" to "Where and How Often?"
 - Focus on rainfall and fire regimes, rather than erosion processes per se
 - Erosion occurs when fire and storms overlap

Summary

- Degree of overlap determined by frequency and size of
 - 1. <u>Fires</u> of different severities
 - 2. <u>Storms</u> that exceed intensity thresholds
- Model can quantify degree of overlap (Risk)
 For different fire regimes
- Relating *fire severity* and *rainfall* to *erosion response* at a landscape scale remain an important area for research

Acknowledgements

- Bushfire CRC for research funding
- Victorian Department of Sustainability and Environment (fire history, aerial photography, and other spatial data sets)
- Australian Bureau of Meteorology (radar data)
- Melbourne Water and eWater CRC (for previous funding research)

"Fire in the Landscape - Water" <u>END-USER FIELD EXURSION</u>

Beechworth, NE Victoria Summer 2011/2012

Organisers: T. Turnbull, P. Nyman, T. Bell G. Sheridan Email: nymanp@unimelb.edu.au

THANK YOU!

References

Nyman P, Sheridan GJ, Smith HG, Lane PNJ (2011) Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia. *Geomorphology* 125(3), 383-401.

Smith HG, Sheridan GJ, Lane PNJ, Nyman P, Haydon S (2011) Wildfire effects on water quality in forest catchments: A review with implications for water supply. *Journal of Hydrology 396(1-2), 170-192.*

Robichaud PR, Elliot WJ, Pierson FB, Hall DE, Moffet CA (2007) Predicting post-fire erosion and mitigation effectiveness with a web-based probabilistic erosion model. *CATENA 71(2), 229-241*

Cannon SH, Gartner JE, Rupert MG, Michael JA, Rea AH, Parrett C (2010) Predicting the probability and volume of post-wildfire debris flows in the intermountain western United States. Geological Society of America Bulletin 122(1-2), 127-144.