

PHOENIX RapidFire 4.0's Convective Plume
Model

Technical Report

A report prepared by:

Derek Chong (University of Melbourne/Bushfire CRC)
Kevin Tolhurst (University of Melbourne)
Thomas Duff (Bushfire CRC)

Theme: Understanding Risk

Project: Fire Impact and Risk Evaluation Decision Support Tool

Component: Enhancement of Fire Behaviour Models

Milestone: 3.2.3

Date: 16 December 2012

Cover photo: Representation of the convection in the 2009 Kilmore Fire as produced by PHOENIX
RapidFire 4.0

This report was produced with financial support from the Bushfire CRC. This is not a published report
and has had internal review, but not independent external peer review. Any opinions expressed in
this report are those of the authors and not the University of Melbourne or the Bushfire CRC. Any use
of original concepts, ideas or results in this report should be done in consultation with the authors.

© 2013

1 | P a g e

Summary

Bushfires are a 3-dimensional phenomenon with significant interaction between the surface and the
atmosphere. Complex coupled fire-atmosphere models have been produced and give amazingly
realistic results, however the computational complexity means that they take many times real-time
to run, even on super computers, and are therefore restricted to small areas and short periods of
time. PHOENIX RapidFire is primarily a 2-dimensional fire model and only takes a few minutes to run
fires in excess of 100,000 ha.

This report describes how PHOENIX RapidFire has been developed to include elements of plume
development and ember transport resulting in spot fires. This was done to try and capture some of
the important 3-dimensional aspects of bushfires without large computational overheads.

Development of the plume rise and spotting components of PHOENIX has been done with the
knowledge of some of the key thermodynamic processes, but a number of assumptions have been
made.

Validation of the plume rise and spotting model is difficult because there are no detailed
observations recorded for the plume, embers, spotfires and upper-level winds. Ground-based
weather radar data was found to be a useful validation dataset for the plume model. The plume
model in PHOENIX was calibrated against weather radar data recorded on Black Saturday, 2009.

Early indications are that there has been a significant improvement in the simulation of the Black
Saturday fires with the incorporation of the plume and spotting models. Further testing will be
required to fully understand the limitations of the model.

2 | P a g e

Contents

Summary ... 1

Introduction .. 3

The Plume Model .. 6

Vertical atmosphere.. 6

Initialisation... 6

Cooling .. 7

Laps Rate ... 7

Entrainment .. 8

Acceleration .. 9

Terminal Velocity .. 10

Expansion .. 10

Time step scaling (dynamic time steps) .. 10

Plume angle... 11

Validation .. 11

Conclusions ... 13

References .. 15

3 | P a g e

Introduction
Plumes or convection columns are a prominent feature of bushfires, and depending on their size and
spatial distribution they are often associated with:

• spotting potential
• fluctuations in local wind speed and direction
• complex fire behaviour
• deterioration of air quality

Currently, there are no simple models for bushfire plumes that predict their convective strength or
their effects on spotting, air quality or destructive potential.

The PHOENIX bushfire characterization model has made several recent advances in describing the
convective elements of bushfires. Efforts to date have focused on identifying surface level,
dominant heat centres (convective centres) and using them a predictor of plume locations and
strength for ember dispersal. The algorithm performs a surface level aggregation of fire perimeter
segments (heat centres) where they are deemed close enough to interact and act as one (Figure 1).

Figure 1. Fire perimeter ‘hottest’ segments (brown arcs) are identified then aggregated where
appropriate to form a convective centre (grey circle).

Visual examination of modelled convective centres shows a good match between predicted location
and extent and those observed in real bushfires. The heat output and location of these convective
areas has been used to provide more realistic results in the PHOENIX ember dispersal and house loss
probability model with very promising results.

4 | P a g e

Figure 2. Image showing heat segments and convective centres from the model run of the 2009 Kilmore
fire.

Whilst a surface level expression of a fire’s significant convective centres is useful in its own right, it
does not describe the vertical component of the phenomenon. For smoke and ember dispersal;
plume height, volume and vertical velocities are important. Over the last 18 months several
exploratory investigations into translating these surface convective centres into plumes have been
conducted.

It is commonly accepted that ember transport is more a function of winds aloft rather than surface
level winds, however, to date; only 10 m input winds are used in operational fire spread prediction.
This is a reflection of the both the available forecast and observed data from automatic weather
station (AWS), and the difficulty in recording higher level winds as part of experimental fires used to
generate the empirical rate of spread functions used in most operational spread models.

Accurate measurements of wind with height and mapping of ember and smoke trajectories is need
in order to develop robust defendable plume and ember transport model.

5 | P a g e

As a plume develops it draws winds down from aloft into its base. Depending on the strength and
direction of these winds, the resulting fire behaviour can vary greatly from those expected using
10 m forecast or AWS data. A realistic plume model and accurate vertical wind data may allow
equivalent 10 m wind speeds to be determined from upper level winds as plumes develop.

A plume can significantly alter surface level winds around a fire, convective indraughts draw air into
the base of a plume affecting the spread rate and direction of surrounding spotfires. A large plume
can effectively act as a barrier to ambient wind by entraining it, thus shadowing the areas down
wind. It may be possible to incorporate some of these behaviours into PHOENIX by means of a
plume model.

A significant amount of work has been carried out in recent years by researchers looking at
convective flows around wildfires using coupled atmospheric models (FIRETEC, WRF Fire) and while
the work has and continues to provided valuable insights into atmospheric interactions with
bushfires, the computational overheads of these models constrain their use to the research domain
as computation time is orders of magnitude greater than real time and are also limited in a spatial
extents, (generally < 1 square km) due to high input data resolution and temporal resolution. In an
operational bushfire prediction context a fire will have probably gone out long before the prediction
is complete.

A review of existing operational plume models was conducted and revealed very little was adoptable
by the PHOENIX model due to a range of issues including:

• Applicability and scalability in the case of chimney stack base dispersal models, due to
column interaction and movement.

• Complexity and performance constraints of running coupled atmospheric/weather based
models

• Issues with incorporating moving and variable heat sources

Coupling PHOENIX to an atmospheric model at a suitable scale would result in significant
performance overheads and chimney stack based models were too simplistic to accurately model
the dynamic nature of bushfire heat emissions at the large bushfire scale.

With limited data available for model development and validation an exploratory green fields
approach was taken to developing the plume model. Discussions with Dr Brain Potter (UDSA For.
Serv., Pacific NW Research Station) were conducted to identify some broad concepts that would
need to be incorporated in order to realistically capture plume dynamics which identified the
following as important to the accurate representation of a bushfires plume:

• Represent plume activity around a fires perimeter, not just a single ‘head’ fire plume model.
A single plume model fails in the case of large complex fires which can have several active
fire fronts and multiple spot fires each generating independent plumes;

• React to changes in wind speed and direction, temperature and relative humidity as the
plume rises through the upper atmosphere;

• Capture plume acceleration/deceleration rates;
• Incorporate cooling due to entrainment/mixing;
• Incorporate adiabatic cooling;
• Incorporate latent heat flux due to condensation;

6 | P a g e

• Model small plumes equally as well as large plumes i.e. scale well.

The model described in this document represents a work in progress, a significant effort is still
required to incorporate and validate key elements described above, but results to date are
promising.

The Plume Model
The initial objective for incorporating a plume model into PHOENIX is to allow ember transport
winds to be determined by interrogating upper level winds. A simple bubble is used to represent the
volume of heated air released from the modelled convective centres in PHOENIX and acts as a tracer
for the plume that will form above. As the bubble rises it will be used as the sampling mechanism to
determine the ember transport wind speed and direction. Once determined, the terminal velocities
of embers in conjunction the plume vertical velocities will be used to calculate ember launch
heights.

Vertical atmosphere
Observation data for plume model development is extremely difficult to obtain. Suitable direct
observations are currently limited to weather balloons; however their coarse spatial and temporal
resolution (1 or 2 launches a day from a very limited number of locations (2 in Victoria) severely limit
the use of this dataset.

Numerical weather models (NWP) can provide a rich picture of the upper atmosphere, but to date
NWP data available has come in the form of forecast data which has struggled to match
observations at a level that would allow a robust model to be developed (see Chong et al., 2012 for
details). This is particularly evident for wind speeds affecting the case study fire areas being
considered as part of this project.

For these reasons, incorporating the affects of changes in temperature, relative humidity, wind
speed and direction to plume rise will be attempted at a later date as suitable data for model
development and validation becomes available.

In order to focus on the vertical elements of a plumes development, a uniformly mixed atmosphere
has been assumed with the environmental lapse rate (6.5oC drop every 1000 m) assumed.

Again, the availability of accurate observed or reconstructed upper level weather data will be the
biggest challenge here, without it, accurate plume model development, calibration and validation
will be difficult.

Initialisation
A representative plume bubble is initialised based on the location, size and strength of each
convective centre currently modelled in PHOENIX. These centres represent the areas of convective
influence on the ground that surround the base of a plume. In the case of a regular elliptical fire
shape this can be defined as the minimum bounding extent containing the hottest 25% of the
perimeter (head fire), extended by 110% to capture the area of in draught flows around a plume’s
base which extend past the burning area.

7 | P a g e

Plumes are observed to have an almost wine-glass shape, tilted where wind speeds are strong. Air
and smoke is drawn in at the base often at quite some distance from the burning area, narrowing
above the fire then expanding out as it rises.

Figure 3. Classical plume shape showing a wide base narrowing to a convergence zone before expanding
out with altitude. (Source: R. Cadell, DSE)

Plume bubbles are initialised with the radius of narrowest part of a plume where the hot gasses
converge above the flaming zone. This is assumed to be 50% of a convective centres effective
radius. Initial temperature is determined using Van Wagner’s function for estimating convection
temperatures above low intensity forest fires (Van Wagner 1975) at a height of 60 m. Plume
bubbles are launched at their source convective centres centroid at ground level at the end of each
simulation time step.

Cooling
Two forms of cooling are incorporated into the plume model, cooling due to the mixing of ambient
air into the plume and an adiabatic lapse rate. Diffusion is not considered at this time. Temperature
rises due to the latent heat of condensation of moisture with the plume is not included at this stage
but it has been identified as a significant contributor to plume rise (Potter 2012).

Laps Rate
A bubble’s cooling rate is assumed to follow the dry adiabatic lapse rate of 9.8⁰C per 1,000 m. The
environmental lapse rate (ELR) of 6.49⁰C per 1,000 m is assumed for the surrounding atmosphere.
The effect of the different lapse rates becomes significant once a bubbles temperature reaches
ambient, at which time a bubble will become cooler than the surrounding atmosphere as it
continues rising, begin decelerating and eventually descend.

8 | P a g e

Entrainment
The entrainment of the surrounding atmosphere into a plume is considered the most significant of
the cooling mechanism. The two most significant factors in determining this rate are assumed to be
the temperature difference between the plume and the surrounding atmosphere and the perimeter
to area ratio at that point. In the case of the plume bubbles, the perimeter to area ratio is replaced
by the surface area to volume ratio.

Figure 4. Entrainment cooling flows represented by blue arrows

The higher the temperature difference between the plume and ambient air, the more vigorous the
mixing process is assumed to be on the plume boundary. The temperature mixing factor 𝑇𝑓 is simply
expressed as the difference between the bubble temperature 𝑇𝑏 and ambient temperature 𝑇𝑎.

𝑇𝑓 = 𝑇𝑏 − 𝑇𝑎

The volume of a plume bubble is assumed to be indicative of a plume’s volume at a corresponding
height.

9 | P a g e

Figure 5. Plume bubble diameters are assumed to represent the actual plume diameter at the same
height.

The entrainment cooling factor of a bubble 𝐸𝑐𝑓 is assumed to be inversely proportional to its surface
area to volume ratio 𝑅𝑠𝑎𝑣. A smaller bubble will cool more rapidly than a larger bubble at the same
starting temperature difference.

𝐸𝑐𝑓 = 10 × (𝑅𝑠𝑎𝑣)0.4

A plume bubble’s temperature drop 𝑇𝑑 is calculated as ⁰C per minute

𝑇𝑑 = 𝑇𝑓 × 0.6 × 𝐸𝑐𝑓

Acceleration
It is assumed that plume flows ‘generally’, accelerate as they approach and enter the base of a
plume and continue accelerating as they approach the convergence zone (narrowest part) of a
plume. After which they gradually decelerate until they stop climbing (peak height) and start to
descend.

Acceleration 𝐴𝑏 (𝑚/𝑠2) in the case of a plume bubble is modelled as a function of bubble density 𝐷𝑏
relative to air density 𝐷𝑎 at the corresponding.

𝐴𝑏 =
9.8 × (𝐷𝑎 − 𝐷𝑏)

𝐷𝑎

10 | P a g e

Terminal Velocity
Simply applying unconstrained acceleration to a plume bubble is not realistic, in the absence of a
limiting factor bubbles will continue at their maximum speed due to conservation of momentum.
Cooling factors will eventually result in deceleration but not at a rate that would account for the
flows velocity after the initial acceleration period.

To capture this limiting factor, a terminal velocity is introduced to capture the drag elements that a
rising mass or air would experience. It is assumed the bubble will experience unconstrained
acceleration until it hits its terminal velocity. It is anticipated that this function will be replaced by a
more dynamic drag function to allow actual velocity to be calculated as a bubble rises.

Bubble lift 𝐿𝑏 (kg) is calculated as a function of its volume 𝑉𝑏 and relative density 𝐷𝑎 − 𝐷𝑏

𝐿𝑏 = 𝑉𝑏 × (𝐷𝑎 − 𝐷𝑏)

Bubble vertical velocity (V, 𝑚/𝑠) is then calculated using the formula below with a drag co efficient
𝐶𝑑 of 0.5, the bubble cross sectional area 𝐴× and ambient air density𝐷𝑎.

𝑉 = 0.25 × �
𝐿𝑏 × 9.8

𝐶𝑑 × 𝐴× × 𝐷𝑎
�

.5

Note the 0.25 value is a scaling factor used to calibrate the plume rise rate against observations in
the development of the model.

Expansion
Plumes increase in size as they rise due to ambient air entrainment, the change in bubble volume 𝑉𝑏
to reflect this is modelled as the square of the bubbles temperature change ratio in Kelvin, with 𝑇𝑝
being the previous bubble temperature and 𝑇𝑐 the current bubble temperature.

𝑉𝑏 = 𝑉𝑏 × �
𝑇𝑝
𝑇𝑐
�
2

Time step scaling (dynamic time steps)
Processing and rendering plume bubbles quickly becomes unmanageable with a fixed time step.
PHOENIX incorporates spotting which can quickly generate hundreds of independent fires which can
all produce their own plumes. Small plumes require a finer time step to capture rapid cooling rates
compared to larger, slower cooling plumes which makes using a fixed time step problematic. With
bubbles being relaunched at every time step for significant convective centres, and their trajectories
recorded, processing time, computer memory use and graphical rendering of the plume become a
major limitation.

Several methods were evaluated to reduce the time steps required to model bubble trajectories to
reduce this overhead. The most successful was to set the time step to coincide with 20 evenly
spaced intervals along the bubbles vertical travel distance.

This vertical travel distance or maximum height was found to be strongly correlated to the bubbles
initial volume to surface area ratio. The variable time step is set as the time required to rise 1/20 of
this maximum height given a bubbles current vertical velocity and acceleration.

11 | P a g e

Results compared favourably to fixed one minute time steps whilst significantly reducing processing
requirements. Dynamics of smaller, faster cooling plumes are captured, as are larger slower cooling
plumes as the time step is proportional to the plumes maximum height which reflects the rate of
change of plume temperatures.

Plume angle
There are many factors that affect a plumes angle such as plume buoyancy, the fires spread rate
relative to wind speed and upper level wind speeds. For this generalized plume implementation
surface (10 m) wind speed and direction is used for horizontal bubble transport/deflection of the
plume.

Validation
PHOENIX is currently a surface spread model with no atmospheric coupling. In order to achieve the
correct spatial distribution of heat, PHOENIX must initially match the progression the fire accurately.
This is achieved by ‘fitting’ a weather stream to ensure the modelled fire adequately matches the
mapped surface spread to ensure a comparable heat distribution. Only the wind direction and
weather timing has been adjusted in these validation cases. Timings are adjusted based on the
distance and direction of the head of the fire to the AWS location used for the observations data.

 BOM Radar data is currently the only reliable data suitable for calibration and validation of the
plume model. With the fires of 7 Feb 2009 in Victoria being the best documented in terms of surface
spread. Unfortunately the most relevant radar installation failed for a period of approximately 4
hours (14:30 – 18:20) which was the period of the major run for the two largest fires of the day. The
‘available’ Radar scan line data has been animated in GoogleEarth and used to visually calibrate and
validate the plume model.

Bushfire dynamics are extremely complex with atmospheric coupling becoming significant as fires
increase in size and heat output. Data required to develop and validate models that capture these
dynamics is extremely limited, even more so for large bushfires. The primary focus on large,
destructive fires is protection of life and property, the collection of scientific data suitable for model
development and validation is not a priority it these cases and would likely interfere. The availability
of quality data is the biggest limitation to the development of a robust plume model in Phoenix.

12 | P a g e

Figure 6. South-easterly run of the Kilmore fire showing modelled plume bubbles as white spheres
compared to radar reflectance scans indicating smoke location and density in pink.

Figure 7. Two comparison images of the Bunyip Ridge fire in its initial 2 hours after breaking out. Post
wind change comparisons are not possible as the smoke from the Kilmore Fire obscures the
plume.

13 | P a g e

Figure 8. Murrindindi fire comparison shortly after the wind change. Smoke on the far right is form the
Kilmore fire.

Conclusions
Whilst the PHOENIX plume model shows promising results it is important to recognise its underlying
functions are based on a simplified upper atmosphere and fitted to events of a single day. The
biggest challenges to validating and improving the model are the availability of accurate:

• surface and upper atmospheric data
• fire progression reconstructions
• observations of plume development and dynamics

Collating and processing these datasets is a complex and time consuming exercise with little in the
ways of standards or tools to guarantee consistency. Given these limitations, any coupling of the
plumes modelled in PHOENIX 4.0 with other fire spread mechanism within PHOENIX is not
supported. The current implementation in PHOENIX 4.0 should be used for indicative purposes only.

For the FIRE-DST case-studies undertaken for the Bushfire CRC, retrospectively generated forecast
grids supplied by the BOM provide an amazing insight into upper atmospheric weather patterns of
these severe fire weather days. However, they exhibit significant biases, especially in wind speed,
which extend from surface to higher levels limiting their use in plume model development and
validation (see Chong et al 2012 for details).

Apart from the Victorian fires of the 7th February 2009, case study fire progression reconstructions
are highly stylised and lack sufficient detail to be confident of the fires location and propagation
mechanisms (spotting VS surface) at particular times.

Reliable radar data for validating plume dynamics is limited to only a few locations nationally and
processing this proprietary data into a form usable for validation requires specialist tools and skills to
be developed.

Literature on plume dynamics of large bushfires show that to date, studies have been largely
theoretical or limited by scale in the case of coupled atmospheric modelling. This has restricted the
option of adopting ‘readily available’ models for plume modelling within PHOENIX. The literature

14 | P a g e

however, reveals an increasing recognition of the importance of convective plumes and atmospheric
coupling on fire spread and in particular the spotting phenomenon.

References
Chong, D., Tolhurst, K. and Duff, T. (2012). "Incorporating vertical winds into PHOENIX RapidFire's

ember dispersal model". Technical Report, Bushfire CRC/University of Melbourne.
Potter, B. E. (2012). "Atmospheric interactions with wildland fire behaviour – II. Plume and vortex

dynamics." International Journal of Wildland Fire 21(7): 802-817.
Van Wagner, C. E. (1975). "Convection temperatures above low intensity forest fires. Can. For. Serv.

Bi-mon. Res. Notes." Can. For. Serv. Bi-mon. Res. Notes 31(2): 21.

15 | P a g e

Appendix 1

Public Class Bubble
 'Bubble implementation of a covective plume
 Implements IComparable(Of Bubble)

 Private colHistory As New List(Of BubbleState)
 Private pState As BubbleState
 Private dblDensity As Double 'kg/m3
 Private dblDragCoeff As Double
 Private pSpotForecast As SpotForecast
 Private blnExclude As Boolean = False
 Private dblMinutes As Double
 Private blnDisplay As Boolean = False

 Public Sub New(ByVal CurrentTime As Date, ByVal Temperature As Double, ByVal Radius As Double,
ByVal Elevation As Double, ByVal X As Double, ByVal Y As Double, ByVal Weather As SpotForecast)
 Dim pWeather As WeatherData

 pSpotForecast = Weather
 pWeather = pSpotForecast.Weather(CurrentTime, 0)

 'create new bubble state and add to collection
 pState = New BubbleState(X, Y, Elevation, Radius, CurrentTime, Temperature, 0.1) 'start
with small vertical velocity
 colHistory.Add(pState.Clone)
 End Sub

 Public Property Display As Boolean
 Get
 Return blnDisplay
 End Get
 Set(value As Boolean)
 blnDisplay = value
 End Set
 End Property
 Public Function Merge(ByVal Bubble As Bubble) As Boolean
 'returns true if bubbles merged
 Dim dblTotalVolume As Double

 If Not WillMerge(Bubble) Then Return False

 'merge bubble properties
 dblTotalVolume = Me.State.Volume + Bubble.State.Volume

 'calculate volume weighted bubble temperature
 Me.State.Temperature = ((Me.State.Temperature * Me.State.Volume) + (Me.State.Temperature *
Bubble.State.Volume)) / dblTotalVolume
 Me.State.Volume = dblTotalVolume
 Me.colHistory.AddRange(Bubble.colHistory)

 Return True

 End Function

 Private Function WillMerge(ByVal Bubble As Bubble) As Boolean
 Dim dblCentersDistance As Double
 'Return False

 dblCentersDistance = Me.State.Location.Distance(Bubble.State.Location)

 If dblCentersDistance < Me.State.Radius + Bubble.State.Radius Then
 Return True
 Else
 Return False
 End If

 End Function
 Property State As BubbleState
 Get
 Return pState
 End Get
 Set(value As BubbleState)

16 | P a g e

 pState = value
 End Set
 End Property
 ReadOnly Property History() As List(Of BubbleState)
 Get
 Return colHistory
 End Get
 End Property
 Public Function MaxHeight(VolumeToSurfaceArea As Double) As Double
 'Approximation of maximum plume height based on surface area to volume ratio, needs to
incorporate temperature in the future
 ' coefficients
 Const a As Double = -18108.8075045193
 Const b As Double = 6423.57301037272
 Const c As Double = 0.109667927227212
 Const d As Double = 17.7860120628726

 'reduce by .6 to approximate lowest temperature values
 VolumeToSurfaceArea = VolumeToSurfaceArea * 0.6

 Return a + b * Math.Log(c * VolumeToSurfaceArea + d)

 End Function
 Public Sub TimeStep(ByVal TargetTime As Date)
 'model bubble rise to the supplie time
 Dim dbltimestep As Double
 Dim dblVolSA As Double = pState.Volume / pState.SurfaceArea
 Dim dblTemp As Double = pState.Temperature
 Dim dblResolutionTimeStep As Double
 Dim dblMaxHeight As Double

 If pState.Height > 20000 Then Exit Sub 'don't perform any convection modelling above 20km
ceiling

 If blnExclude Then Exit Sub

 'approximate max height
 dblMaxHeight = MaxHeight(pState.Volume / pState.SurfaceArea)

 Do
 If colHistory.Count < 2 Then 'first time steps, make it small to initialise
acceleration
 dblResolutionTimeStep = 0.2
 Else
 'calculate time step to cover sample distance
 dblResolutionTimeStep = pState.TimeStep(dblMaxHeight / 20) 'sample distance based
on approximate max height, 20 sample points
 End If

 'dblResolutionTimeStep = 0.1

 'calculate remaining timestep
 dbltimestep = TargetTime.Subtract(pState.CurrentAt).TotalMinutes

 If dbltimestep < dblResolutionTimeStep Then
 dblResolutionTimeStep = dbltimestep
 End If

 'perform timestep
 Me.Increment(dblResolutionTimeStep)

 colHistory.Add(pState.Clone) 'add new state to history

 If pState.VerticalVelocity <= 1 AndAlso pState.CurrentAcceleration <= 0.1 Then
 blnExclude = True
 ElseIf pState.Height > 20000 Then 'do not go above 20 km
 blnExclude = True
 End If

 Loop Until pState.CurrentAt = TargetTime Or blnExclude 'model until end of time or when
bubble stops rising and has been excluded

 End Sub

17 | P a g e

 Private Sub Increment(ByVal Minutes As Double)
 'model bubble movement for duration
 Dim dblAirTemperature, dblHorizontalDistance As Double
 Dim pWeather As WeatherData

 pWeather = pSpotForecast.Weather(Me.State.CurrentAt, 0)
 dblAirTemperature = pWeather.Temperature - (0.0065 * pState.Height) 'caluclate air
temperature at balloon altitude using environmental laps rate

 'update bubble state
 pState.Update(dblAirTemperature, Minutes)

 pState.HorizontalVelocity = pWeather.WindSpeed / 3.6 'convert to m/s

 dblHorizontalDistance = pWeather.WindSpeed * 1000 * (Minutes / 60) 'horizontal distance
travelled in m

 'calculate new location based on wind speed and direction
 pState.Location = pState.Location.ResultingPoint(dblHorizontalDistance,
pWeather.WindDirection)

 End Sub

 Public Function CompareTo(other As Bubble) As Integer Implements System.IComparable(Of
Bubble).CompareTo
 'reverse sort in decending order
 If Me.pState.Radius > other.pState.Radius Then
 Return -1
 ElseIf Me.pState.Radius < other.pState.Radius Then
 Return 1
 Else
 Return 0
 End If
 End Function

 End Class

18 | P a g e

Appendix 2

Public Class BubbleState
 'Captures a bubbles current state and manages transition to next time increment
 Private dblX, dblY, dblHeight, dblRadius As Double
 Private dblVerticalVelocity, dblHorizontalVelocity As Double 'm/s
 Private dblCurrentAcceleration As Double 'm/s
 Private dblCurrentTerminalVelocity As Double 'm/s
 Private dblTemperature As Double 'C
 Private dtCurrentAt As Date
 Private dblMinutes As Double
 Public dblMaxVerticalVelocity As Double
 Public Sub New(ByVal X As Double, ByVal Y As Double, ByVal Height As Double, ByVal Radius As
Double, ByVal CurrentAt As Date, ByVal Temperature As Double, ByVal VerticalVelocity As Double)
 dblX = X
 dblY = Y
 dblHeight = Height
 dblRadius = Radius
 dblTemperature = Temperature
 dtCurrentAt = CurrentAt
 dblVerticalVelocity = VerticalVelocity
 End Sub
 Public Function TimeStep(ByVal SampleDistance As Double) As Double
 'determine the next time step required to meet the distance increment
 Dim dblATimeStep As Double

 If Me.CurrentAcceleration > 0 Then
 dblATimeStep = (-Me.VerticalVelocity + Math.Sqrt(Me.VerticalVelocity ^ 2 - 4 * 0.5 *
Me.CurrentAcceleration * -SampleDistance)) / (2 * 0.5 * Me.CurrentAcceleration)
 Else
 dblATimeStep = SampleDistance / Me.VerticalVelocity
 End If

 Return dblATimeStep / 60 ' convert to minutes

 End Function

 Property Temperature As Double
 Get
 Return dblTemperature
 End Get
 Set(value As Double)
 dblTemperature = value
 End Set
 End Property
 Property Location As MapPoint
 Get
 Return New MapPoint(X, Y)
 End Get
 Set(value As MapPoint)
 dblX = value.X
 dblY = value.Y
 End Set
 End Property
 Property VerticalVelocity As Double 'm/s
 Get
 Return dblVerticalVelocity
 End Get
 Set(value As Double)
 dblVerticalVelocity = value
 End Set
 End Property
 ReadOnly Property CurrentTerminalVelocity As Double 'm/s
 Get
 Return dblCurrentTerminalVelocity
 End Get
 End Property
 ReadOnly Property CurrentAcceleration As Double 'm/s2
 Get
 Return dblCurrentAcceleration
 End Get
 End Property
 Property HorizontalVelocity As Double 'm/s

19 | P a g e

 Get
 Return dblHorizontalVelocity
 End Get
 Set(value As Double)
 dblHorizontalVelocity = value
 End Set
 End Property
 Property X As Double
 Get
 Return dblX
 End Get
 Set(value As Double)
 dblX = value
 End Set
 End Property

 Property Y As Double
 Get
 Return dblY
 End Get
 Set(value As Double)
 dblY = value
 End Set
 End Property

 Property Height As Double
 Get
 Return dblHeight
 End Get
 Set(value As Double)
 dblHeight = value
 End Set
 End Property
 Public Property Volume As Double
 Get
 Return (4 / 3) * Math.PI * Me.Radius ^ 3
 End Get
 Set(value As Double)
 dblRadius = VolumeToRadius(value)
 End Set
 End Property
 Public ReadOnly Property SurfaceArea As Double
 Get
 Return 4 * Math.PI * Me.Radius ^ 2
 End Get
 End Property

 Private Function VolumeToRadius(ByVal Volume As Double) As Double
 Return ((3 * Volume) / (4 * Math.PI)) ^ (1 / 3)
 End Function

 Property Radius As Double
 Get
 Return dblRadius
 End Get
 Set(value As Double)
 dblRadius = value
 End Set
 End Property

 Property CurrentAt As Date
 Get
 Return dtCurrentAt
 End Get
 Set(value As Date)
 dtCurrentAt = value
 End Set
 End Property
 Private Function TerminalVelocity(ByVal AirTemperature As Double) As Double
 'calculates bubble terminal velocity based on difference in air density.
 'and bubble cross sectional area
 'bigger bubbles should have more drag but ^3 volume relationship to radius should
compensate in terms of lift.
 Dim dblVelocity As Double

20 | P a g e

 Dim dblAirDensity, dblBubbleDensity As Double
 Dim dblAirPressure As Double
 Dim dblDragCoefficient, dblCrossArea As Double

 'calculate air pressure and temperature at bubble height
 dblAirPressure = 1000 * WeatherData.AltitudePressureKpa(Me.Height) 'pressure in pa

 'calculate densities in kg/m3
 dblAirDensity = dblAirPressure / (287.05 * (AirTemperature + 273.15))
 dblBubbleDensity = dblAirPressure / (287.05 * (Me.Temperature + 273.15))

 Dim dblLift As Double = Me.Volume * (dblAirDensity - dblBubbleDensity)

 dblLift = Math.Max(dblLift, 0) 'fence at positive lift.

 dblDragCoefficient = 0.5

 dblCrossArea = Math.PI * Me.Radius ^ 2

 dblVelocity = Math.Sqrt(dblLift * 9.8 / (0.5 * dblDragCoefficient * dblCrossArea *
dblAirDensity)) / 4 'reduce by a factor of 4 to keep below 200 km/h

 Return dblVelocity
 End Function

 Private Function Acceleration(ByVal BubbleTemperature As Double, ByVal AirTemperature As
Double, ByVal Altitude As Double) As Double
 'returns acceleration in m/s^2
 Dim dblAccleration As Double
 Dim dblAirDensity, dblBubbleDensity As Double
 Dim dblAirPressure As Double

 'calculate air pressure and temperature at bubble height
 dblAirPressure = 1000 * WeatherData.AltitudePressureKpa(Altitude) 'pressure in pa

 'calculate densities
 dblAirDensity = dblAirPressure / (287.05 * (AirTemperature + 273.15))
 dblBubbleDensity = dblAirPressure / (287.05 * (BubbleTemperature + 273.15))

 dblAccleration = 9.8 * (dblAirDensity - dblBubbleDensity) / dblAirDensity

 Return dblAccleration

 End Function

 Public Function Update(ByVal AirTemperature As Double, ByVal Minutes As Double) As Boolean
 'calculates the bubble temperature drop for a given time
 Dim dblCoolingFactor, dblTemperatureDrop As Double
 Dim dblTempDiff As Double
 Dim dblDistance As Double
 Dim dblNewVelocity As Double
 Dim dblInitialTemperature As Double
 Dim dblAcceleration As Double

 'increment total minutes
 dblMinutes += Minutes

 dblInitialTemperature = Me.Temperature

 'set current acceleration
 dblAcceleration = Acceleration(Me.Temperature, AirTemperature, Me.Height)

 'calculate new velocity based on acceleration, ignoring drag
 dblNewVelocity = (Me.VerticalVelocity + (Me.VerticalVelocity + (dblAcceleration * (Minutes
* 60)))) / 2

 'set current terminal velocity
 dblCurrentTerminalVelocity = Me.TerminalVelocity(AirTemperature)

 'limit bubble assent rate to terminal velocity
 If dblNewVelocity > Me.CurrentTerminalVelocity Then
 dblNewVelocity = Me.CurrentTerminalVelocity
 End If

21 | P a g e

 dblMaxVerticalVelocity = Max(dblMaxVerticalVelocity, dblNewVelocity)
 'calculate temperature difference
 dblTempDiff = Me.Temperature - AirTemperature

 '1 minute entrainment factor, larger bubbles take longer to cool due to surface area to
volume ratio
 'Ambient air takes longer to mix in
 dblCoolingFactor = 10 * (Me.SurfaceArea / Me.Volume) ^ 0.4

 'assume 60% change in temperature difference per minute
 dblTemperatureDrop = dblTempDiff * 0.6 * dblCoolingFactor * Minutes

 If dblTemperatureDrop >= dblTempDiff Then
 'drop due to entrainment/mixing cannot go below air temperature, set bubble
temperature to air temperature
 Me.Temperature = AirTemperature
 Else
 Me.Temperature = (Me.Temperature + (Me.Temperature - dblTemperatureDrop)) / 2
 End If

 'update current accleration based on change in velocity
 dblCurrentAcceleration = (dblNewVelocity - Me.VerticalVelocity) / (Minutes * 60)

 Me.VerticalVelocity = dblNewVelocity

 'update state for height change
 dblDistance = Me.VerticalVelocity * (Minutes * 60)

 Me.Height = Me.Height + dblDistance

 Me.Temperature -= dblDistance * 0.01 'apply environmental lapse rate to baloon temperature

 'recalculate volume, assume inversely porprotional to temperature drop
 Me.Volume = Me.Volume * ((dblInitialTemperature + 273.15) / (Me.Temperature + 273.15)) ^ 2

 Me.CurrentAt = Me.CurrentAt.AddMinutes(Minutes)

 End Function

 Public Function Clone() As BubbleState
 Return New BubbleState(Me.X, Me.Y, Me.Height, Me.Radius, Me.CurrentAt, Me.Temperature,
Me.VerticalVelocity)
 End Function

 End Class

	//Technical Report
	Summary
	Introduction
	The Plume Model
	Vertical atmosphere
	Initialisation
	Cooling
	Laps Rate
	Entrainment

	Acceleration
	Terminal Velocity
	Expansion
	Time step scaling (dynamic time steps)
	Plume angle
	Validation

	Conclusions
	References
	Appendix 1
	Appendix 2

