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Summary 
 

Bushfires are a 3-dimensional phenomenon with significant interaction between the surface and the 
atmosphere.  Complex coupled fire-atmosphere models have been produced and give amazingly 
realistic results, however the computational complexity means that they take many times real-time 
to run, even on super computers, and are therefore restricted to small areas and short periods of 
time.  PHOENIX RapidFire is primarily a 2-dimensional fire model and only takes a few minutes to run 
fires in excess of 100,000 ha. 

This report describes how PHOENIX RapidFire has been developed to include elements of plume 
development and ember transport resulting in spot fires.  This was done to try and capture some of 
the important 3-dimensional aspects of bushfires without large computational overheads. 

Development of the plume rise and spotting components of PHOENIX has been done with the 
knowledge of some of the key thermodynamic processes, but a number of assumptions have been 
made. 

Validation of the plume rise and spotting model is difficult because there are no detailed 
observations recorded for the plume, embers, spotfires and upper-level winds.  Ground-based 
weather radar data was found to be a useful validation dataset for the plume model.  The plume 
model in PHOENIX was calibrated against weather radar data recorded on Black Saturday, 2009.   

Early indications are that there has been a significant improvement in the simulation of the Black 
Saturday fires with the incorporation of the plume and spotting models.  Further testing will be 
required to fully understand the limitations of the model. 
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Introduction 
Plumes or convection columns are a prominent feature of bushfires, and depending on their size and 
spatial distribution they are often associated with: 

• spotting potential 
• fluctuations in local wind speed and direction 
• complex fire behaviour 
• deterioration of air quality 

Currently, there are no simple models for bushfire plumes that predict their convective strength or 
their effects on spotting, air quality or destructive potential. 

The PHOENIX bushfire characterization model has made several recent advances in describing the 
convective elements of bushfires.  Efforts to date have focused on identifying surface level, 
dominant heat centres (convective centres) and using them a predictor of plume locations and 
strength for ember dispersal.  The algorithm performs a surface level aggregation of fire perimeter 
segments (heat centres) where they are deemed close enough to interact and act as one (Figure 1). 

 

Figure 1. Fire perimeter ‘hottest’ segments (brown arcs) are identified then aggregated where 
appropriate to form a convective centre (grey circle). 

Visual examination of modelled convective centres shows a good match between predicted location 
and extent and those observed in real bushfires.  The heat output and location of these convective 
areas has been used to provide more realistic results in the PHOENIX ember dispersal and house loss 
probability model with very promising results.  
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Figure 2. Image showing heat segments and convective centres from the model run of the 2009 Kilmore 
fire.   

Whilst a surface level expression of a fire’s significant convective centres is useful in its own right, it 
does not describe the vertical component of the phenomenon.  For smoke and ember dispersal; 
plume height, volume and vertical velocities are important.  Over the last 18 months several 
exploratory investigations into translating these surface convective centres into plumes have been 
conducted. 

It is commonly accepted that ember transport is more a function of winds aloft rather than surface 
level winds, however, to date; only 10 m input winds are used in operational fire spread prediction.  
This is a reflection of the both the available forecast and observed data from automatic weather 
station (AWS), and the difficulty in recording higher level winds as part of experimental fires used to 
generate the empirical rate of spread functions used in most operational spread models. 

Accurate measurements of wind with height and mapping of ember and smoke trajectories is need 
in order to develop robust defendable plume and ember transport model. 
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As a plume develops it draws winds down from aloft into its base.  Depending on the strength and 
direction of these winds, the resulting fire behaviour can vary greatly from those expected using 
10 m forecast or AWS data.  A realistic plume model and accurate vertical wind data may allow 
equivalent 10 m wind speeds to be determined from upper level winds as plumes develop. 

A plume can significantly alter surface level winds around a fire, convective indraughts draw air into 
the base of a plume affecting the spread rate and direction of surrounding spotfires.  A large plume 
can effectively act as a barrier to ambient wind by entraining it, thus shadowing the areas down 
wind.  It may be possible to incorporate some of these behaviours into PHOENIX by means of a 
plume model. 

A significant amount of work has been carried out in recent years by researchers looking at 
convective flows around wildfires using coupled atmospheric models (FIRETEC, WRF Fire) and while 
the work has and continues to provided valuable insights into atmospheric interactions with 
bushfires, the computational overheads of these models constrain their use to the research domain 
as computation time is orders of magnitude greater than real time and are also limited in a spatial 
extents, (generally  < 1 square km) due to high input data resolution and temporal resolution.  In an 
operational bushfire prediction context a fire will have probably gone out long before the prediction 
is complete. 

A review of existing operational plume models was conducted and revealed very little was adoptable 
by the PHOENIX model due to a range of issues including: 

• Applicability and scalability in the case of chimney stack base dispersal models, due to 
column interaction and movement. 

• Complexity and performance constraints of running coupled atmospheric/weather based 
models 

• Issues with incorporating moving and variable heat sources 

Coupling PHOENIX to an atmospheric model at a suitable scale would result in significant 
performance overheads and chimney stack based models were too simplistic to accurately model 
the dynamic nature of bushfire heat emissions at the large bushfire scale. 

With limited data available for model development and validation an exploratory green fields 
approach was taken to developing the plume model.  Discussions with Dr Brain Potter (UDSA For. 
Serv., Pacific NW Research Station) were conducted to identify some broad concepts that would 
need to be incorporated in order to realistically capture plume dynamics which identified the 
following as important to the accurate representation of a bushfires plume: 

• Represent plume activity around a fires perimeter, not just a single ‘head’ fire plume model.  
A single plume model fails in the case of large complex fires which can have several active 
fire fronts and multiple spot fires each generating independent plumes; 

• React to changes in wind speed and direction, temperature and relative humidity as the 
plume rises through the upper atmosphere; 

• Capture plume acceleration/deceleration rates; 
• Incorporate cooling due to entrainment/mixing; 
• Incorporate adiabatic cooling; 
• Incorporate latent heat flux due to condensation; 
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• Model small plumes equally as well as large plumes i.e. scale well. 

The model described in this document represents a work in progress, a significant effort is still 
required to incorporate and validate key elements described above, but results to date are 
promising. 

The Plume Model 
The initial objective for incorporating a plume model into PHOENIX is to allow ember transport 
winds to be determined by interrogating upper level winds.  A simple bubble is used to represent the 
volume of heated air released from the modelled convective centres in PHOENIX and acts as a tracer 
for the plume that will form above.  As the bubble rises it will be used as the sampling mechanism to 
determine the ember transport wind speed and direction.  Once determined, the terminal velocities 
of embers in conjunction the plume vertical velocities will be used to calculate ember launch 
heights. 

Vertical atmosphere 
Observation data for plume model development is extremely difficult to obtain.  Suitable direct 
observations are currently limited to weather balloons; however their coarse spatial and temporal 
resolution (1 or 2 launches a day from a very limited number of locations (2 in Victoria) severely limit 
the use of this dataset. 

Numerical weather models (NWP) can provide a rich picture of the upper atmosphere, but to date 
NWP data available has come in the form of forecast data which has struggled to match 
observations at a level that would allow a robust model to be developed (see Chong et al., 2012 for 
details).  This is particularly evident for wind speeds affecting the case study fire areas being 
considered as part of this project. 

For these reasons, incorporating the affects of changes in temperature, relative humidity, wind 
speed and direction to plume rise will be attempted at a later date as suitable data for model 
development and validation becomes available. 

In order to focus on the vertical elements of a plumes development, a uniformly mixed atmosphere 
has been assumed with the environmental lapse rate (6.5oC drop every 1000 m) assumed.   

Again, the availability of accurate observed or reconstructed upper level weather data will be the 
biggest challenge here, without it, accurate plume model development, calibration and validation 
will be difficult. 

Initialisation 
A representative plume bubble is initialised based on the location, size and strength of each 
convective centre currently modelled in PHOENIX.  These centres represent the areas of convective 
influence on the ground that surround the base of a plume.  In the case of a regular elliptical fire 
shape this can be defined as the minimum bounding extent containing the hottest 25% of the 
perimeter (head fire), extended by 110% to capture the area of in draught flows around a plume’s 
base which extend past the burning area. 
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Plumes are observed to have an almost wine-glass shape, tilted where wind speeds are strong.  Air 
and smoke is drawn in at the base often at quite some distance from the burning area, narrowing 
above the fire then expanding out as it rises. 

 

Figure 3. Classical plume shape showing a wide base narrowing to a convergence zone before expanding 
out with altitude.  (Source: R. Cadell, DSE) 

Plume bubbles are initialised with the radius of narrowest part of a plume where the hot gasses 
converge above the flaming zone.  This is assumed to be 50% of a convective centres effective 
radius.  Initial temperature is determined using Van Wagner’s function for estimating convection 
temperatures above low intensity forest fires (Van Wagner 1975) at a height of 60 m.  Plume 
bubbles are launched at their source convective centres centroid at ground level at the end of each 
simulation time step. 

Cooling 
Two forms of cooling are incorporated into the plume model, cooling due to the mixing of ambient 
air into the plume and an adiabatic lapse rate.  Diffusion is not considered at this time.  Temperature 
rises due to the latent heat of condensation of moisture with the plume is not included at this stage 
but it has been identified as a significant contributor to plume rise (Potter 2012). 

Laps Rate 
A bubble’s cooling rate is assumed to follow the dry adiabatic lapse rate of 9.8⁰C per 1,000 m.  The 
environmental lapse rate (ELR) of 6.49⁰C per 1,000 m is assumed for the surrounding atmosphere.  
The effect of the different lapse rates becomes significant once a bubbles temperature reaches 
ambient, at which time a bubble will become cooler than the surrounding atmosphere as it 
continues rising, begin decelerating and eventually descend. 
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Entrainment 
The entrainment of the surrounding atmosphere into a plume is considered the most significant of 
the cooling mechanism.  The two most significant factors in determining this rate are assumed to be 
the temperature difference between the plume and the surrounding atmosphere and the perimeter 
to area ratio at that point.  In the case of the plume bubbles, the perimeter to area ratio is replaced 
by the surface area to volume ratio. 

 

Figure 4. Entrainment cooling flows represented by blue arrows 

The higher the temperature difference between the plume and ambient air, the more vigorous the 
mixing process is assumed to be on the plume boundary.  The temperature mixing factor 𝑇𝑓 is simply 
expressed as the difference between the bubble temperature 𝑇𝑏 and ambient temperature 𝑇𝑎. 

𝑇𝑓 = 𝑇𝑏 − 𝑇𝑎 

The volume of a plume bubble is assumed to be indicative of a plume’s volume at a corresponding 
height. 
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Figure 5. Plume bubble diameters are assumed to represent the actual plume diameter at the same 
height. 

The entrainment cooling factor of a bubble 𝐸𝑐𝑓 is assumed to be inversely proportional to its surface 
area to volume ratio 𝑅𝑠𝑎𝑣.  A smaller bubble will cool more rapidly than a larger bubble at the same 
starting temperature difference. 

𝐸𝑐𝑓 = 10 × (𝑅𝑠𝑎𝑣)0.4 

A plume bubble’s temperature drop 𝑇𝑑 is calculated as ⁰C per minute 

𝑇𝑑 = 𝑇𝑓 × 0.6 × 𝐸𝑐𝑓 

Acceleration 
It is assumed that plume flows ‘generally’, accelerate as they approach and enter the base of a 
plume and continue accelerating as they approach the convergence zone (narrowest part) of a 
plume.  After which they gradually decelerate until they stop climbing (peak height) and start to 
descend. 

Acceleration 𝐴𝑏 (𝑚/𝑠2) in the case of a plume bubble is modelled as a function of bubble density 𝐷𝑏 
relative to air density 𝐷𝑎 at the corresponding. 

𝐴𝑏 =
9.8 × (𝐷𝑎 − 𝐷𝑏)

𝐷𝑎
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Terminal Velocity 
Simply applying unconstrained acceleration to a plume bubble is not realistic, in the absence of a 
limiting factor bubbles will continue at their maximum speed due to conservation of momentum.  
Cooling factors will eventually result in deceleration but not at a rate that would account for the 
flows velocity after the initial acceleration period. 

To capture this limiting factor, a terminal velocity is introduced to capture the drag elements that a 
rising mass or air would experience.  It is assumed the bubble will experience unconstrained 
acceleration until it hits its terminal velocity.  It is anticipated that this function will be replaced by a 
more dynamic drag function to allow actual velocity to be calculated as a bubble rises. 

Bubble lift 𝐿𝑏 (kg) is calculated as a function of its volume 𝑉𝑏 and relative density 𝐷𝑎 − 𝐷𝑏 

𝐿𝑏 = 𝑉𝑏  × (𝐷𝑎 − 𝐷𝑏) 

Bubble vertical velocity (V, 𝑚/𝑠) is then calculated using the formula below with a drag co efficient 
𝐶𝑑 of 0.5, the bubble cross sectional area 𝐴× and ambient air density𝐷𝑎. 

𝑉 =  0.25 × �
𝐿𝑏  × 9.8

𝐶𝑑 × 𝐴× × 𝐷𝑎
�

.5
 

Note the 0.25 value is a scaling factor used to calibrate the plume rise rate against observations in 
the development of the model. 

Expansion 
Plumes increase in size as they rise due to ambient air entrainment, the change in bubble volume 𝑉𝑏 
to reflect this is modelled as the square of the bubbles temperature change ratio in Kelvin, with 𝑇𝑝 
being the previous bubble temperature and 𝑇𝑐 the current bubble temperature. 

𝑉𝑏 = 𝑉𝑏 × �
𝑇𝑝
𝑇𝑐
�
2

 

Time step scaling (dynamic time steps) 
Processing and rendering plume bubbles quickly becomes unmanageable with a fixed time step.  
PHOENIX incorporates spotting which can quickly generate hundreds of independent fires which can 
all produce their own plumes.  Small plumes require a finer time step to capture rapid cooling rates 
compared to larger, slower cooling plumes which makes using a fixed time step problematic.  With 
bubbles being relaunched at every time step for significant convective centres, and their trajectories 
recorded, processing time, computer memory use and graphical rendering of the plume become a 
major limitation. 

Several methods were evaluated to reduce the time steps required to model bubble trajectories to 
reduce this overhead.  The most successful was to set the time step to coincide with 20 evenly 
spaced intervals along the bubbles vertical travel distance. 

This vertical travel distance or maximum height was found to be strongly correlated to the bubbles 
initial volume to surface area ratio.  The variable time step is set as the time required to rise 1/20 of 
this maximum height given a bubbles current vertical velocity and acceleration. 
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Results compared favourably to fixed one minute time steps whilst significantly reducing processing 
requirements.  Dynamics of smaller, faster cooling plumes are captured, as are larger slower cooling 
plumes as the time step is proportional to the plumes maximum height which reflects the rate of 
change of plume temperatures. 

Plume angle 
There are many factors that affect a plumes angle such as plume buoyancy, the fires spread rate 
relative to wind speed and upper level wind speeds.  For this generalized plume implementation 
surface (10 m) wind speed and direction is used for horizontal bubble transport/deflection of the 
plume. 

Validation 
PHOENIX is currently a surface spread model with no atmospheric coupling.  In order to achieve the 
correct spatial distribution of heat, PHOENIX must initially match the progression the fire accurately.  
This is achieved by ‘fitting’ a weather stream to ensure the modelled fire adequately matches the 
mapped surface spread to ensure a comparable heat distribution.  Only the wind direction and 
weather timing has been adjusted in these validation cases.  Timings are adjusted based on the 
distance and direction of the head of the fire to the AWS location used for the observations data. 

 BOM Radar data is currently the only reliable data suitable for calibration and validation of the 
plume model.  With the fires of 7 Feb 2009 in Victoria being the best documented in terms of surface 
spread.  Unfortunately the most relevant radar installation failed for a period of approximately 4 
hours (14:30 – 18:20) which was the period of the major run for the two largest fires of the day.  The 
‘available’ Radar scan line data has been animated in GoogleEarth and used to visually calibrate and 
validate the plume model.  

Bushfire dynamics are extremely complex with atmospheric coupling becoming significant as fires 
increase in size and heat output.  Data required to develop and validate models that capture these 
dynamics is extremely limited, even more so for large bushfires.  The primary focus on large, 
destructive fires is protection of life and property, the collection of scientific data suitable for model 
development and validation is not a priority it these cases and would likely interfere.  The availability 
of quality data is the biggest limitation to the development of a robust plume model in Phoenix. 
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Figure 6. South-easterly run of the Kilmore fire showing modelled plume bubbles as white spheres 
compared to radar reflectance scans indicating smoke location and density in pink. 

 

Figure 7. Two comparison images of the Bunyip Ridge fire in its initial 2 hours after breaking out.  Post 
wind change comparisons are not possible as the smoke from the Kilmore Fire obscures the 
plume. 
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Figure 8. Murrindindi fire comparison shortly after the wind change.  Smoke on the far right is form the 
Kilmore fire. 

Conclusions 
Whilst the PHOENIX plume model shows promising results it is important to recognise its underlying 
functions are based on a simplified upper atmosphere and fitted to events of a single day.  The 
biggest challenges to validating and improving the model are the availability of accurate: 

• surface and upper atmospheric data 
• fire progression reconstructions 
• observations of plume development and dynamics 

Collating and processing these datasets is a complex and time consuming exercise with little in the 
ways of standards or tools to guarantee consistency.  Given these limitations, any coupling of the 
plumes modelled in PHOENIX 4.0 with other fire spread mechanism within PHOENIX is not 
supported.  The current implementation in PHOENIX 4.0 should be used for indicative purposes only. 

For the FIRE-DST case-studies undertaken for the Bushfire CRC, retrospectively generated forecast 
grids supplied by the BOM provide an amazing insight into upper atmospheric weather patterns of 
these severe fire weather days.  However, they exhibit significant biases, especially in wind speed, 
which extend from surface to higher levels limiting their use in plume model development and 
validation (see Chong et al 2012 for details). 

Apart from the Victorian fires of the 7th February 2009, case study fire progression reconstructions 
are highly stylised and lack sufficient detail to be confident of the fires location and propagation 
mechanisms (spotting VS surface) at particular times. 

Reliable radar data for validating plume dynamics is limited to only a few locations nationally and 
processing this proprietary data into a form usable for validation requires specialist tools and skills to 
be developed. 

Literature on plume dynamics of large bushfires show that to date, studies have been largely 
theoretical or limited by scale in the case of coupled atmospheric modelling.  This has restricted the 
option of adopting ‘readily available’ models for plume modelling within PHOENIX.  The literature 
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however, reveals an increasing recognition of the importance of convective plumes and atmospheric 
coupling on fire spread and in particular the spotting phenomenon. 
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Appendix 1 
 
Public Class Bubble 
        'Bubble implementation of a covective plume 
        Implements IComparable(Of Bubble) 
 
        Private colHistory As New List(Of BubbleState) 
        Private pState As BubbleState 
        Private dblDensity As Double 'kg/m3 
        Private dblDragCoeff As Double 
        Private pSpotForecast As SpotForecast 
        Private blnExclude As Boolean = False 
        Private dblMinutes As Double 
        Private blnDisplay As Boolean = False 
 
        Public Sub New(ByVal CurrentTime As Date, ByVal Temperature As Double, ByVal Radius As Double, 
ByVal Elevation As Double, ByVal X As Double, ByVal Y As Double, ByVal Weather As SpotForecast) 
            Dim pWeather As WeatherData 
 
            pSpotForecast = Weather 
            pWeather = pSpotForecast.Weather(CurrentTime, 0) 
 
            'create new bubble state and add to collection 
            pState = New BubbleState(X, Y, Elevation, Radius, CurrentTime, Temperature, 0.1) 'start 
with small vertical velocity 
            colHistory.Add(pState.Clone) 
        End Sub 
 
        Public Property Display As Boolean 
            Get 
                Return blnDisplay 
            End Get 
            Set(value As Boolean) 
                blnDisplay = value 
            End Set 
        End Property 
        Public Function Merge(ByVal Bubble As Bubble) As Boolean 
            'returns true if bubbles merged 
            Dim dblTotalVolume As Double 
 
            If Not WillMerge(Bubble) Then Return False 
 
            'merge bubble properties 
            dblTotalVolume = Me.State.Volume + Bubble.State.Volume 
 
            'calculate volume weighted bubble temperature 
            Me.State.Temperature = ((Me.State.Temperature * Me.State.Volume) + (Me.State.Temperature * 
Bubble.State.Volume)) / dblTotalVolume 
            Me.State.Volume = dblTotalVolume 
            Me.colHistory.AddRange(Bubble.colHistory) 
 
            Return True 
 
        End Function 
 
        Private Function WillMerge(ByVal Bubble As Bubble) As Boolean 
            Dim dblCentersDistance As Double 
            'Return False 
 
            dblCentersDistance = Me.State.Location.Distance(Bubble.State.Location) 
 
            If dblCentersDistance < Me.State.Radius + Bubble.State.Radius Then 
                Return True 
            Else 
                Return False 
            End If 
 
        End Function 
        Property State As BubbleState 
            Get 
                Return pState 
            End Get 
            Set(value As BubbleState) 
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                pState = value 
            End Set 
        End Property 
        ReadOnly Property History() As List(Of BubbleState) 
            Get 
                Return colHistory 
            End Get 
        End Property 
        Public Function MaxHeight(VolumeToSurfaceArea As Double) As Double 
            'Approximation of maximum plume height based on surface area to volume ratio, needs to 
incorporate temperature in the future 
            ' coefficients 
            Const a As Double = -18108.8075045193 
            Const b As Double = 6423.57301037272 
            Const c As Double = 0.109667927227212 
            Const d As Double = 17.7860120628726 
 
            'reduce by .6 to approximate lowest temperature values 
            VolumeToSurfaceArea = VolumeToSurfaceArea * 0.6 
 
            Return a + b * Math.Log(c * VolumeToSurfaceArea + d) 
 
        End Function 
        Public Sub TimeStep(ByVal TargetTime As Date) 
            'model bubble rise to the supplie time 
            Dim dbltimestep As Double 
            Dim dblVolSA As Double = pState.Volume / pState.SurfaceArea 
            Dim dblTemp As Double = pState.Temperature 
            Dim dblResolutionTimeStep As Double 
            Dim dblMaxHeight As Double 
 
            If pState.Height > 20000 Then Exit Sub 'don't perform any convection modelling above 20km 
ceiling 
 
            If blnExclude Then Exit Sub 
 
            'approximate max height 
            dblMaxHeight = MaxHeight(pState.Volume / pState.SurfaceArea) 
 
            Do 
                If colHistory.Count < 2 Then 'first time steps, make it small to initialise 
acceleration 
                    dblResolutionTimeStep = 0.2 
                Else 
                    'calculate time step to cover sample distance 
                    dblResolutionTimeStep = pState.TimeStep(dblMaxHeight / 20) 'sample distance based 
on approximate max height, 20 sample points 
                End If 
 
                'dblResolutionTimeStep = 0.1 
 
                'calculate remaining timestep 
                dbltimestep = TargetTime.Subtract(pState.CurrentAt).TotalMinutes 
 
                If dbltimestep < dblResolutionTimeStep Then 
                    dblResolutionTimeStep = dbltimestep 
                End If 
 
                'perform timestep 
                Me.Increment(dblResolutionTimeStep) 
 
                colHistory.Add(pState.Clone) 'add new state to history 
 
                If pState.VerticalVelocity <= 1 AndAlso pState.CurrentAcceleration <= 0.1 Then 
                    blnExclude = True 
                ElseIf pState.Height > 20000 Then 'do not go above 20 km 
                    blnExclude = True 
                End If 
 
            Loop Until pState.CurrentAt = TargetTime Or blnExclude  'model until end of time or when 
bubble stops rising and has been excluded 
 
        End Sub 
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        Private Sub Increment(ByVal Minutes As Double) 
            'model bubble movement for duration 
            Dim dblAirTemperature, dblHorizontalDistance As Double 
            Dim pWeather As WeatherData 
 
            pWeather = pSpotForecast.Weather(Me.State.CurrentAt, 0) 
            dblAirTemperature = pWeather.Temperature - (0.0065 * pState.Height) 'caluclate air 
temperature at balloon altitude using environmental laps rate 
 
            'update bubble state 
            pState.Update(dblAirTemperature, Minutes) 
 
            pState.HorizontalVelocity = pWeather.WindSpeed / 3.6 'convert to m/s 
 
            dblHorizontalDistance = pWeather.WindSpeed * 1000 * (Minutes / 60) 'horizontal distance 
travelled in m 
 
            'calculate new location based on wind speed and direction 
            pState.Location = pState.Location.ResultingPoint(dblHorizontalDistance, 
pWeather.WindDirection) 
 
        End Sub 
 
        Public Function CompareTo(other As Bubble) As Integer Implements System.IComparable(Of 
Bubble).CompareTo 
            'reverse sort in decending order 
            If Me.pState.Radius > other.pState.Radius Then 
                Return -1 
            ElseIf Me.pState.Radius < other.pState.Radius Then 
                Return 1 
            Else 
                Return 0 
            End If 
        End Function 
 
    End Class 
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Appendix 2 
 
Public Class BubbleState 
        'Captures a bubbles current state and manages transition to next time increment 
        Private dblX, dblY, dblHeight, dblRadius As Double 
        Private dblVerticalVelocity, dblHorizontalVelocity As Double 'm/s 
        Private dblCurrentAcceleration As Double 'm/s 
        Private dblCurrentTerminalVelocity As Double 'm/s 
        Private dblTemperature As Double 'C 
        Private dtCurrentAt As Date 
        Private dblMinutes As Double 
        Public dblMaxVerticalVelocity As Double 
        Public Sub New(ByVal X As Double, ByVal Y As Double, ByVal Height As Double, ByVal Radius As 
Double, ByVal CurrentAt As Date, ByVal Temperature As Double, ByVal VerticalVelocity As Double) 
            dblX = X 
            dblY = Y 
            dblHeight = Height 
            dblRadius = Radius 
            dblTemperature = Temperature 
            dtCurrentAt = CurrentAt 
            dblVerticalVelocity = VerticalVelocity 
        End Sub 
        Public Function TimeStep(ByVal SampleDistance As Double) As Double 
            'determine the next time step required to meet the distance increment 
            Dim dblATimeStep As Double 
 
            If Me.CurrentAcceleration > 0 Then 
                dblATimeStep = (-Me.VerticalVelocity + Math.Sqrt(Me.VerticalVelocity ^ 2 - 4 * 0.5 * 
Me.CurrentAcceleration * -SampleDistance)) / (2 * 0.5 * Me.CurrentAcceleration) 
            Else 
                dblATimeStep = SampleDistance / Me.VerticalVelocity 
            End If 
 
            Return dblATimeStep / 60 ' convert to minutes 
 
        End Function 
 
        Property Temperature As Double 
            Get 
                Return dblTemperature 
            End Get 
            Set(value As Double) 
                dblTemperature = value 
            End Set 
        End Property 
        Property Location As MapPoint 
            Get 
                Return New MapPoint(X, Y) 
            End Get 
            Set(value As MapPoint) 
                dblX = value.X 
                dblY = value.Y 
            End Set 
        End Property 
        Property VerticalVelocity As Double 'm/s 
            Get 
                Return dblVerticalVelocity 
            End Get 
            Set(value As Double) 
                dblVerticalVelocity = value 
            End Set 
        End Property 
        ReadOnly Property CurrentTerminalVelocity As Double 'm/s 
            Get 
                Return dblCurrentTerminalVelocity 
            End Get 
        End Property 
        ReadOnly Property CurrentAcceleration As Double 'm/s2 
            Get 
                Return dblCurrentAcceleration 
            End Get 
        End Property 
        Property HorizontalVelocity As Double 'm/s 
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            Get 
                Return dblHorizontalVelocity 
            End Get 
            Set(value As Double) 
                dblHorizontalVelocity = value 
            End Set 
        End Property 
        Property X As Double 
            Get 
                Return dblX 
            End Get 
            Set(value As Double) 
                dblX = value 
            End Set 
        End Property 
 
        Property Y As Double 
            Get 
                Return dblY 
            End Get 
            Set(value As Double) 
                dblY = value 
            End Set 
        End Property 
 
        Property Height As Double 
            Get 
                Return dblHeight 
            End Get 
            Set(value As Double) 
                dblHeight = value 
            End Set 
        End Property 
        Public Property Volume As Double 
            Get 
                Return (4 / 3) * Math.PI * Me.Radius ^ 3 
            End Get 
            Set(value As Double) 
                dblRadius = VolumeToRadius(value) 
            End Set 
        End Property 
        Public ReadOnly Property SurfaceArea As Double 
            Get 
                Return 4 * Math.PI * Me.Radius ^ 2 
            End Get 
        End Property 
 
        Private Function VolumeToRadius(ByVal Volume As Double) As Double 
            Return ((3 * Volume) / (4 * Math.PI)) ^ (1 / 3) 
        End Function 
 
        Property Radius As Double 
            Get 
                Return dblRadius 
            End Get 
            Set(value As Double) 
                dblRadius = value 
            End Set 
        End Property 
 
        Property CurrentAt As Date 
            Get 
                Return dtCurrentAt 
            End Get 
            Set(value As Date) 
                dtCurrentAt = value 
            End Set 
        End Property 
        Private Function TerminalVelocity(ByVal AirTemperature As Double) As Double 
            'calculates bubble terminal velocity based on difference in air density. 
            'and bubble cross sectional area 
            'bigger bubbles should have more drag but ^3 volume relationship to radius should 
compensate in terms of lift. 
            Dim dblVelocity As Double 
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            Dim dblAirDensity, dblBubbleDensity As Double 
            Dim dblAirPressure As Double 
            Dim dblDragCoefficient, dblCrossArea As Double 
 
            'calculate air pressure and temperature at bubble height 
            dblAirPressure = 1000 * WeatherData.AltitudePressureKpa(Me.Height) 'pressure in pa 
 
            'calculate densities in kg/m3 
            dblAirDensity = dblAirPressure / (287.05 * (AirTemperature + 273.15)) 
            dblBubbleDensity = dblAirPressure / (287.05 * (Me.Temperature + 273.15)) 
 
            Dim dblLift As Double = Me.Volume * (dblAirDensity - dblBubbleDensity) 
 
            dblLift = Math.Max(dblLift, 0) 'fence at positive lift. 
 
            dblDragCoefficient = 0.5 
 
            dblCrossArea = Math.PI * Me.Radius ^ 2 
 
            dblVelocity = Math.Sqrt(dblLift * 9.8 / (0.5 * dblDragCoefficient * dblCrossArea * 
dblAirDensity)) / 4 'reduce by a factor of 4 to keep below 200 km/h 
 
            Return dblVelocity 
        End Function 
 
        Private Function Acceleration(ByVal BubbleTemperature As Double, ByVal AirTemperature As 
Double, ByVal Altitude As Double) As Double 
            'returns acceleration in m/s^2 
            Dim dblAccleration As Double 
            Dim dblAirDensity, dblBubbleDensity As Double 
            Dim dblAirPressure As Double 
 
            'calculate air pressure and temperature at bubble height 
            dblAirPressure = 1000 * WeatherData.AltitudePressureKpa(Altitude) 'pressure in pa 
 
            'calculate densities 
            dblAirDensity = dblAirPressure / (287.05 * (AirTemperature + 273.15)) 
            dblBubbleDensity = dblAirPressure / (287.05 * (BubbleTemperature + 273.15)) 
 
            dblAccleration = 9.8 * (dblAirDensity - dblBubbleDensity) / dblAirDensity 
 
            Return dblAccleration 
 
        End Function 
        
        Public Function Update(ByVal AirTemperature As Double, ByVal Minutes As Double) As Boolean 
            'calculates the bubble temperature drop for a given time 
            Dim dblCoolingFactor, dblTemperatureDrop As Double 
            Dim dblTempDiff As Double 
            Dim dblDistance As Double 
            Dim dblNewVelocity As Double 
            Dim dblInitialTemperature As Double 
            Dim dblAcceleration As Double 
 
            'increment total minutes 
            dblMinutes += Minutes 
 
            dblInitialTemperature = Me.Temperature 
 
            'set current acceleration 
            dblAcceleration = Acceleration(Me.Temperature, AirTemperature, Me.Height) 
 
 
            'calculate new velocity based on acceleration, ignoring drag 
            dblNewVelocity = (Me.VerticalVelocity + (Me.VerticalVelocity + (dblAcceleration * (Minutes 
* 60)))) / 2 
 
            'set current terminal velocity 
            dblCurrentTerminalVelocity = Me.TerminalVelocity(AirTemperature) 
 
            'limit bubble assent rate to terminal velocity 
            If dblNewVelocity > Me.CurrentTerminalVelocity Then 
                dblNewVelocity = Me.CurrentTerminalVelocity 
            End If 
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            dblMaxVerticalVelocity = Max(dblMaxVerticalVelocity, dblNewVelocity) 
            'calculate temperature difference 
            dblTempDiff = Me.Temperature - AirTemperature 
 
            '1 minute entrainment factor, larger bubbles take longer to cool due to surface area to 
volume ratio 
            'Ambient air takes longer to mix in 
            dblCoolingFactor = 10 * (Me.SurfaceArea / Me.Volume) ^ 0.4 
 
            'assume 60% change in temperature difference per minute 
            dblTemperatureDrop = dblTempDiff * 0.6 * dblCoolingFactor * Minutes 
 
            If dblTemperatureDrop >= dblTempDiff Then 
                'drop due to entrainment/mixing cannot go below air temperature, set bubble 
temperature to air temperature 
                Me.Temperature = AirTemperature 
            Else 
                Me.Temperature = (Me.Temperature + (Me.Temperature - dblTemperatureDrop)) / 2 
            End If 
 
            'update current accleration based on change in velocity 
            dblCurrentAcceleration = (dblNewVelocity - Me.VerticalVelocity) / (Minutes * 60) 
 
            Me.VerticalVelocity = dblNewVelocity 
 
            'update state for height change 
            dblDistance = Me.VerticalVelocity * (Minutes * 60) 
 
            Me.Height = Me.Height + dblDistance 
 
            Me.Temperature -= dblDistance * 0.01 'apply environmental lapse rate to baloon temperature 
 
            'recalculate volume, assume inversely porprotional to temperature drop 
            Me.Volume = Me.Volume * ((dblInitialTemperature + 273.15) / (Me.Temperature + 273.15)) ^ 2 
 
            Me.CurrentAt = Me.CurrentAt.AddMinutes(Minutes) 
 
        End Function 
 
        Public Function Clone() As BubbleState 
            Return New BubbleState(Me.X, Me.Y, Me.Height, Me.Radius, Me.CurrentAt, Me.Temperature, 
Me.VerticalVelocity) 
        End Function 
 
    End Class 
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