## Flame propagation in shrubland fuels





#### **Fire in Heath**

- Usually a crown fire
- A "Go" / "No Go " way about them
- Little lateral spread
- Still holds surprises for land managers and researchers.







### Scaled down forest crown fires?

- As green canopy is removed drier material is exposed to greater wind.
- This is not unlike crowning forest fires but contrasts with surface litter fires and grass fires.
- Height and bulk density are major differences
- Under-running surface fire can occur in heath





## **Canopy removal**

Exposes the more flammable lower layers to more wind

 But- provides a mechanism which can moderate escalating fire behaviour.









# wind profile changes with canopy removal



### wind profile change in low heath





#### **Moderators of fire behaviour**

- Convective wind feedback.
- Volatile gas release thermal transfer limitations
- Protection of most-flammable zone by green cap.
- Green cap burnout time less sensitive to FDI parameters.





## **Downwind video at Ngarkat**

Note 10 sec removal of canopy.





#### **Canopy removal**

$$U_f = U_o / (1 + f_d \int D dx)$$

ie wind at flaming zone decreases with increasing flame depth

$$F_d = R * 11sec$$

ie. constant green cap burnout.

Combining

R  $\alpha \sqrt{1 + K U} - C$  ... a threshold to get started, less than linear at higher windspeeds.

© Bushfire CRC Ltd. 2005



#### **Conclusions**

- Changing canopy drag as green material is removed is a moderator of fire behaviour in both heath and forest vegetation.
- Should be observed as a less-thanlinear response to wind at the upper end of fire behaviour.

