

# Understanding exposures to air toxics during firefighting of bushfires in the rural urban interface

#### Fabienne Reisen and Michael Borgas

Centre for Australian Weather and Climate Research, CSIRO Marine & Atmospheric Research, Aspendale, VIC, Australia

Research Advisory Forum, Lidcombe, NSW, 23-24 October 2012





#### **OBJECTIVE**









#### Assumptions:

- no SCBA
- no firefighting within structures

What are the exposure risks?
What are the potential health impacts (acute & chronic)?

## **RESEARCH APPROACH**









#### **ELEMENTS**





#### I. FUEL









Complex mix of vegetation and other fuels

- House structure
- House contents
- Surrounding elements
- Vehicles
- Sheds

Complex spatial distribution of materials

#### SPATIAL DISTRIBUTION OF COMBUSTIBLES





Finite number of point source emissions characterised by

- a scale,
- material, hence emission type,
- estimate of emission rates

### Significant variability in:

- type, amount and material composition of items present at the RUI
- spatial distribution of materials
- elemental composition of materials
- presence of fire retardants in materials

#### **II. EMISSIONS**







Literature data Experimental data



#### **Combustion products**

- Nature/toxicity
- Emission rates

#### **Factors**

- Nature of fuel/material
- Ventilation
- Temperature
- Fire geometry

#### **EMISSIONS – COMBUSTION PRODUCTS**



- Cone calorimeter tests
  - Identify key air toxics
  - assess emission rates for gaseous and particle species from burning various types of materials relative to wood
  - well-controlled conditions

| Materials            |  |  |
|----------------------|--|--|
| Pine                 |  |  |
| Painted Pine         |  |  |
| Particle board (PB)  |  |  |
| PB with melamine     |  |  |
| MDF                  |  |  |
| Carpet               |  |  |
| PUR foam (2 types)   |  |  |
| Polyester insulation |  |  |
| Polystyrene cladding |  |  |
| Plasterboard         |  |  |

#### **CONE CALORIMETER TESTS - DESIGN**





- Exhaust flow: 0.024 m<sup>3</sup> s<sup>-1</sup>
- Irradiance level: 25kW m<sup>-2</sup>
- 100 × 100 mm samples conditioned at 23  $\pm$  2° C



# TIME SERIES ANALYSIS OF CO, CO<sub>2</sub> AND PM: WOOD-BASED PRODUCTS





## EMISSIONS OF CO, CO<sub>2</sub> AND PARTICLES



## **Emission factors (g/kg)**



## Emission rates (g/s)



#### **ELEMENTAL AND ORGANIC CARBON**





#### **VOLATILE ORGANIC COMPOUNDS**





#### **UNCERTAINTIES**



- Variability in fire conditions: ventilation and temperature have an effect on composition and amount of combustion products emitted
   ⇒ Variability in emission factors
- Fire geometry influence on emission yields
- Pure materials vs. mixture of materials

#### III. DISPERSION







#### **PUFF-GENERATED PLUMES**



- Finite number of point source emissions characterised by
  - a scale (single burning house or cluster, e.g. suburb)
  - material (heterogeneity)
  - emission type
  - estimate of emission rates
- Puff-generated plumes from multiple point sources coupled with complex of winds at source emissions – need canopy characteristics



High time resolution for near field peak concentration exposures (1-min, 15-min)

#### **MODELLED EXPOSURE CONCENTRATIONS**





#### IV. EXPOSURE ASSESSMENT



Compare modelled ground concentrations of key pollutants to occupational exposure standards



#### **MODELLED GROUND CONCENTRATIONS**



#### New dispersion model technique:

- Provides ground concentrations for a range of pollutants at short-time resolution
- Allows for peak, short-term and average workshift exposure assessment
- Takes into consideration exposures to a mixture of air pollutants which may have additive or synergistic effects

#### **TARGET ORGANS**



#### Respiratory tract

Benzene, toluene, styrene, formaldehyde, acrolein, phenol, isocyanates

### Carcinogen

Benzene, formaldehyde, naphthalene, B(a)P, isocyanates, 1,3-butadiene

#### **Asphyxia**

CO, HCN

#### Central nervous system

CO, benzene, toluene, phenol, 1,3-butadiene

## **AIR TOXICS – HEALTH EFFECTS**



| Air toxic       | TWA (mg/m³)        | Health effect                    |
|-----------------|--------------------|----------------------------------|
| CO <sub>2</sub> | 9000               | Changes to respiratory patterns  |
| СО              | 34                 | Asphyxiant                       |
| HCN             | 11 (peak)          | Asphyxiant                       |
| NH <sub>3</sub> | 17                 | Respiratory irritant             |
| NO              | 31                 | Hypoxia at high concentrations   |
| NO <sub>2</sub> | 5.6                | Respiratory irritant             |
| HCl             | 7.5 (peak)         | Severe irritant                  |
| SO <sub>2</sub> | 5.2                | Irritant                         |
| Hydrocarbons    | 3.2 (benzene)      | Irritant; asphyxiant; carcinogen |
| VOCs            | 1.2 (formaldehyde) | Irritant; probable carcinogens   |
| PAHs            | 52 (naphthalene)   | Irritant; probable carcinogens   |

## **EXPOSURE ASSESSMENT - UNCERTAINTIES**



- Emission estimates for materials burnt and their spatial distribution within the RUI
- Firefighters' activities and position in relation to the smoke plume - Detailed information on tactical approach in fighting bushfires at RUI
- Changing meteorological conditions

- □ Develop a useable set of scenarios
- Compare modelled exposure concentrations to previously measured exposures at structural fire incidents

#### **CURRENT OUTPUTS**



#### **Posters**

- AFAC/BFCRC conference 2010: Smoke impacts at the rural-urban interface
- AFAC/BFCRC conference 2011: Emissions from fires at the rural-urban interface
- AFAC/BFCRC conference 2012: Rural Urban Interface Integrated emissions and smoke dispersion from burning buildings

#### Fire note

Identifying smoke impacts from bushfires extending into the rural-urban interface

#### Reports

- Inventory of major materials present in and around houses and their combustion emission products (2011)
- Design of experimental burns (2011)
- Models for dispersion and exposure prediction of combustion emission products (2011)
- Toxic emissions from fires at the rural urban interface Desktop study (2011)
- Electronic nose application in burning urban fringe (2012)
- Smoke and VOC dispersion integration in the burnt rural urban interface (2012)
- Exposures to toxic emissions from fires at the rural urban interface Progress report
   (2012)

#### **ADDITIONAL MONITORING**



- Large scale burns Agency involvement
  - Shed burn (determine materials)
  - Room burns with house contents
  - Facility to conduct burns
- Exposure measurements at training and/or structural fires
  - Personal
    - CO, HCN, NH3, H2S (Draeger monitor)
    - PM
    - VOCs & Aldehydes
  - Area sampling

Input into model

Validation of model

# **RESEARCH OUTPUTS/APPLICATION**



- Communication Strategies
  - Final report scenario based exposure assessment
  - Practical guide on exposure estimates how fast does the risk escalate

# **THANK YOU**

Fabienne Reisen Research Scientist

t +61 3 9239 4435

e <u>fabienne.reisen@csiro.au</u>

