Smoke Dispersion modelling

Mick Meyer

The Objectives

1. Include bushfire smoke in air quality modelling systems

- Emissions
- Verification of the dispersion
- Exploration of potential for remote sensing

Process

Case studies of extensive fires

3. Human health impacts

1. Exposure (integration with fire DST)

Health impacts (Epidemiologists PhD candidate)

- 4. Improving current estimates of PM and GHG emission factors
- 5. Tools for planning of burning programs

Programs and Deliverables

3 Case Studies

• 2006/7 Alpine fires (Complete)

Kilmore East (Black Saturday) and scenarios (Complete)

Regeneration burning in the Huon Valley (TAPM complete)

(2003 alpine fires)

EF studies

Pyrotron simulations

1 field measurement set

Health Impacts

PhD is progressing well

Exposure: Fire DST

Technology transfer

How to use the current systems

(Complete, data analysis)

(Complete)

Deliverables

- 3 Papers
 - 1 complete, 2 are in draft
- Firenotes
 - 3 are in near complete drafts.
- Reviews and reports
 - Review of models is complete
 - EF studies delayed and now progressing
 - Technology transfer reports
 - Configuring TAPM
 - Inverse modelling to assess relative risk of impact for different source locations

TRANSPORT MODELLING METHODOLOGY

MODEL SENSITIVIES

Plume Rise (transport)

PM_{2.5} – peak daily for December 2006 O₃- peak 1-h for December 2006 Hysplit- Hour 14 UTC 8th December 2006

Emissions

Persistence

Smoke Dispersion from Kilmore East

Emission factor sampling

EFs

PM, total VOC

Field Measurements Heyfield

MCE ~ EF CO

Heyfield compares with Savanna

Bureau of Meteorology

Lessons Learned

- The models perform well
- 2. The challenge is to link the components of a system together
 - Incompatible input & output formats
 - Range of models with different strengths an weaknesses
- 3. The model run slowly/ require large computing power
 - Need a large UNIX cluster (~1000 processor machine)
- 4. Output from the review of models was that the Bluesky framework was worth exploring further.

