Ignition of Solid fuels and the Modelling of Forest fires

José L. Torero

BRE Gentre for Fire Safety Engineering

 The University of Edinhourgh, UK
Modelling of Forest fires

of very complex problem

Sullivan, A., "A Review of Wildland Fire Spread Modelling, 1990-Present, 1: Physical and Quasi-Physical Models", arXiv:0706.3074v1[physics.geo-ph] (2007).

Compathilitity

o Resolving all length and time scales in a single model is impossible
o It is necessary to develop subgrid/filtering models
o Sub-grid/filtering models need to be "compatible" with the outputs of the primary model

Atmosyherie Scale

- Dispersion

o The fire is treated as a heat source
o Strength of the plume defined by the diameter of the fire (D) and the heat release rate-defines the characteristic length scale (L)

Gompatibilitity

o Energy/species can be introduced within a defined volume as a source term and allowed to disperse

Classic Scaling Amproach

o Focuses on proper modelling of buoyant entrainment

Inertia Buoyancy

$$
Q^{*}=\frac{\dot{\mathrm{Q}}_{0}}{\rho_{\infty} T_{\infty} \mathrm{Cp}_{\infty}(g \mathrm{D})^{1 / 2} \mathrm{D}^{2}}
$$

o Obtain a characteristic length scale

- If $\mathbf{Q *}=1$

- Temperature and velocity fields can be presented as a function of a scaled length: Incorporates the Heat Release Rate Dependency

Gomisatilility

o In a stationary fire compatibility between the "entrainment region" and the "dispersion region" can be achieved by a sub grid model that defines the fire as a heat release rate (source term) over a well defined "volume" (characteristic length scales ($\mathrm{D}_{\mathbf{\prime}}, \mathrm{I}$))

Flame Spread

o Forest fires spread - thus spread rates are necessary

- Flame spread rates can be defined in an empirical way and incorporated to "atmospheric type" models - compatible
- To maintain the characteristic length scale "burn-out" rates are necessary too - compatible

Limitations

o Flame Spread rates depend on many variables (vegetation type, density, humidity, slope, wind, etc.)
o Burn-out rates depend on many variables (vegetation type, humidity, fuel load, density, wind, etc.)
o Mixture of fuel and environmental variables

Flame Suread:Sequence of Imnitions

 $10^{\text {ths }}$ of To Atmospheric Models Metres$10^{\text {ths }}$ of Centimetres

Gas Phase Heat Transfer

Combustion Processes

Ignition

Condensed Phase:
Heat Transfer + Chemistry

Incompatible

Fuel Degradation ($\mu \mathrm{m}, \mathrm{s}$)
I
Gas Phase Chemistry (nm, ms) 1
Soot Production ($\mu \mathrm{m}, \mathrm{ms}$) I
Radiative Losses (cm, ns)
I
Flame Temperature (cm, s)
I
Radiative Heat Transfer (cm, ns)

- To resolve ignition it is necessary to resolve the fasters time scales and the smallest length scales (nm, ns)
o Result needs to be fed into an combustion model ($1^{\text {ths }} \mathrm{cm}$, sec resolution)- Incompatible
o Computational cost unacceptable Precision unnecessary

Incompatibility

o Heat fluxes obtained from models/experiments ($10^{\text {ths }} \mathrm{cm}$)
o Heat fluxes applied to a porous matrix (mm)

- Temperature across the porous bed resolved (nm)
o Degradation resolved via simplified Arrhenius type chemistry ($\omega=\bar{A} \cdot e^{-E / R T}$)
- Experimental validation studies - mass loss (cm)

Why nm Resolution?

- Adequate resolution of the degradation chemistry requires resolving temperature gradients within the fuel thickness

Compatible Solution

o Ideal Scenario:
o Input is the gas phase heat flux
oSolid phase heat transfer (porous media) does not have to be resolved
o Degradation chemistry does not have to be resolved
oSolution: Sub-Grid model based on experimental data as an input to the model (cm/s - resolution)

Ignition Delay Time

o Ignition time is linearly dependent to incident heat flux (cm/s - Model)

Apulicable to Forest Fire Fuels

Ignition Delay Times
 o Can be estimated as a function of the heat flux if the heat flux is a constant

Modifiy Mathematical Solution

o For linear ramps integrating the expression for time to ignition over time, it can be shown that:

Talitiation: Fire Propagation Apparatus

Resulis

$\left(\int_{0}^{t} \dot{\mathrm{q}}_{\text {in }}^{\prime \prime}(t) \mathrm{dt}\right)^{2}$

Gompatihility

o Combustion Model can be used to estimate the evolution of the integral heat flux to the surface as a function of time ($10^{\text {ths }} \mathrm{cm}$)
$0^{4} K^{3 / 3}$ - material property (fuel type, water content, weather variables, etc.)
o Simple model provides tig $_{\text {ig }}$
o No need to resolve porous media \& solid heat transfer or degradation chemistry (nm)

Summery

o Forest fires cover an extensive range of time and length scales
o Different processes result in incompatible time and/or length scales
o For practical purposes, these need to be resolved with physically based sub-grid models that ensure compatibility

Thank you

