

Assessing Potential House Losses using PHOENIX RapidFire

Kevin Tolhurst & Derek Chong

Department of Forest and Ecosystem Science, University of Melbourne

Program: "Understanding Risk"

Project: "Fire Impact and Risk Evaluation - Decision Support Tool (FIRE-DST)"

A deterministic, dynamic, continuous, empirical fire characterization model

- a) **Deterministic** combines mechanistic and empirical elements (not stochastic or physical)
- **b) Dynamic** inputs conditional on base fire behaviour conditions (not steady-state).
- **c) Continuous** fire spread is a continuous process calculated as perimeter point vectors (not discrete event or transition model, not CA).
- **d) Empirical** dynamics in model have been tuned to observed fire behaviour patterns over a range of wildfire situations

"Modelling is an abstraction of a complex reality in the simplest way that is adequate for the purpose." (Mulligan, M. and Wainwright, J. (2004). Modelling and model building.)

CONVECTIVE CENTRES

STUDY DATA (HOUSES)

	Lost	Survived	Total	Pr(Loss)	
Churchill	225	146	146 371		
Kilmore	1751	1836 3587		0.49	
Murrindindi	664	400	400 1064		
Stawell	14	46 60		0.23	
Total	2654	2428	5082	0.52	

PRINCIPAL COMPONENT ANALYSIS

Figure 1. Principal Component Analysis of predicted fire variables for houses destroyed in the Kilmore East, Murrindindi and Churchill fires on Black Saturday 2009.

"FLAME HEIGHT"

Figure 2. Probability of house loss when associated with predicted flame height.

Model	R value
Pr(Loss) = 0.8348/(1+1.10667*EXP(-0.05726*FlameHt))	0.896

"FLAME XS AREA"

Flame cross sectional | Pr/Loss\ = 0.40025*FlameYSA0.0702 | 0.025

Flame cross-sectional	Pr(Loss) = 0.40935*FlameXS^0.0793	0.935	
area (m²)			

"EMBER DENSITY"

Ember density (#/m²)

Pr(Loss) = 0.5715*(1.1747-EXP(-0.9513*Ember))

0.907

"FIRELINE INTENSITY"

Fireline Intensity (kW/m) Pr(Loss) = 1/(4.5278-1.7366*Intensity^0.05456) 0.952

"CONVECTIVE STRENGTH"

Convection	Pr(Loss) = 0.2543*(Convect+5.6966)^0.104	0.981

"CONVECTIVE DENSITY"

"CONVECTIVE DENSITY"

Figure 7. Probability of house loss associated with predicted convective strength smoothed over a 2000 m radius.

Convection Density	Pr(Loss) = 0.9303-0.7554*EXP(-0.0000926*ConvectDens^0.7085)	0.989	
--------------------	---	-------	--

50/50 THRESHOLDS

Table 2.

50% survival/loss threshold value for each fire parameter based on the line-of-best-fit regression lines in Table 1.

Fire Parameter	50/50 Survival Threshold Value			
Flame height (m)	9 m			
Flame cross-sectional area (m²)	13 m ²			
Ember density (#/m²)	1.3 embers/m ²			
Fireline Intensity (kW/m)	1,000 kW/m			
Convection	700			
Convection Density	220,000			

INTERACTIVE FACTORS

Logistic equation 1.

Pr(Loss)=1-EXP(0.63076-0.0000021*ConvectDens-0.0002662*FlameXS-

0.01832 Embers) (1+EXP(0.63076-0.0000021*ConvectDens-0.0002662*FlameXS-

0.01832*Embers))

Somers D = 0.51

Logistic equation 2.

Pr(Loss) = 1-EXP(0.2894-0.000487*FlameXS-0.02003*Embers-

0.0000157*Convect)/(1+EXP(0.2894-0.000487*FlameXS-0.02003*Embers-

0.0000157*Convect))

Somers D = 0.42

FIRE BY FIRE PREDICTION

Table 2. Average probability of house loss predicted by each of the proposed models (Table 1 and Logistic equations) compared with the actual house status "Lost"/"Surv", subdivided by fire event.

	Logit1		Logit2		FlameXS		FlameHt	
FIRE	Lost	Surv	Lost	Surv	Lost	Surv	Lost	Surv
Churchill	0.59	0.46	0.58	0.50	0.52	0.35	0.53	0.48
Kilmore	0.61	0.45	0.58	0.49	0.53	0.41	0.58	0.49
Murrindindi	0.54	0.41	0.50	0.45	0.48	0.33	0.50	0.46
Stawell	0.36	0.37	0.43	0.44	0.51	0.47	0.44	0.44
Tota 0.59 0.44		0.56	0.48	0.52	0.40	0.55	0.48	

Λ	_1.	1
А	CII	ual

Pr(Loss)
0.61
0.49
0.62
0.23

EmberD	mberDens		Intensity		Convection		ConvectDens	
Lost	Surv	Lost	Surv	Lost	Surv	Lost	Surv	
0.61	0.34	0.58	0.47	0.50	0.39	0.52	0.35	
0.53	0.37	0.57	0.48	0.49	0.38	0.52	0.35	
0.52	0.24	0.54	0.43	0.40	0.34	0.52	0.33	
0.13	0.15	0.60	0.57	0.33	0.38	0.25	0.27	
0.53	0.34	0.56	0.47	0.47	0.38	0.52	0.34	

SUMMARY

- 1. Fire characteristics modelled by PHOENIX RapidFire have provided a reasonable basis for predicting broad-level house loss statistics.
- Modelled bushfire convective energy was a major factor is predicting house loss and this has not been included as a factor in previous house loss work even though the importance of wind damage has been noted.
- 3. Further work is needed to investigate the accuracy of "neighborhood" house loss predictions.
- 4. House design and maintenance, house-to-house ignition and the level of defense are important factors in house loss, but are not included in this approach.