

Distributed weather data stream mining for bushfire hazard prediction: wireless sensor network application

Hakilo Sabit & Adnan Al-Anbuky
SeNSe Research Lab
Electrical & Electronic Engineering
Auckland University of Technology
Auckland – New Zealand

Presentation Structure

- Background
- Weather data stream
- Bushfire hazard prediction
- FWI
- WSN architecture
- Distributed weather data stream mining
- Modelling & simulation
- Results
- conclusion

Canterbury metrology stations distr.

A, Darfield A -> B 91.3Km B, Ashburton

C, Burnham B -> C 36.7Km C -> D 27Km D, Aero E, Snowdon D -> E 41Km

Example of EMS for weather prediction.

Distance means Energy

Figure A-3 Diagram illustrating the effect of range and earth curvature (with standard atmospheric refraction) on NEXRAD cross-beam resolution and coverage of low-level weather phenomena. Courtesy of SRI International.

Precision Farming

Motivation

Sisilia

- Direct sensing of local variable
- Local processing at the sensor level
- Facilitate In-Situation Interaction

Weather data stream

- A weather data stream is a real-time, continuous, ordered sequence of Tuples containing weather parameter fields.
- Weather parameters can related according to a model to provide information such as Bushfire hazard, climate change.
- Model processing should be able to handle continuously streaming weather parameters to be useful.

Bushfire hazard prediction

- FWI bushfire hazard modelling system
 - Relative ease of ignition. (FFMC)
 - Fuel consumption in moderate duff layers. (DMC)
 - Degree of smouldering in large logs. (DC)
 - Rate of fire spread. (ISI)
 - Difficulty of containing. (BUI)
 - General rating of fire intensity. (FWI)

FWI structure

WSN architecture

WSN architecture

- Wireless sensor nodes source weather data stream.
- Distributed weather stream source.
- Minor processing tasks.
- Clustering (GROUPING) of sensor nodes.
- Cooperative processing.
- Hierarchically organized network
- WSN drives toward low power low cost

Distributed weather data stream mining

- Data stream clustering
- Incremental distributed stream clustering algorithm
 - SUBFCM
- Involves
 - Sensor nodes processing sub-task
 - Cluster head processing sub-task
 - Sink or coordinator processing sub-task

Distributed weather stream mining system

Modelling & simulation

- MATLAB for sub-tasks modeling.
- TrueTime for WSN modeling.
- SIMULINK for simulating the system model.

Results

Data set number

WSN architecture

FWI error

Conclusion

- High resolution spatial and temporal wildfire hazard prediction system
- The approach open the door for extending the National weather network to cater for areas of importance or hazard prone like National parks, etc
- Real weather data streams containing the weather parameter required for FWI indices computation is used to validate the model capability.
- Simulation results show that the model as is able to handle weather data streams incoming as fast as in I second interval with reasonable errors.
- The average error for the various simulations show that network data rate have significant consequences on model performance
- The True Time model makes use of the individual wireless sensor nodes to contribute in the computation of bushfire hazard prediction indices as given in FWI.