

Forest Carbon Balance and Emission Management

Luba Volkova and Chris Weston

Melbourne School of Land and Environment, the University of Melbourne

RESEARCH OBJECTIVES

- Measure the immediate impact of prescribed burning on carbon balance across a range of forests and burn conditions
- 2. Develop a better knowledge base to enable end-user agencies to model the immediate consequences of prescribed burning on both carbon and greenhouse gas (GHG) emissions
- 3. Model recovery of carbon stocks over a range of timescales
- 4. Identify burn techniques likely to minimize emission of GHGs whilst achieving appropriate fuel- and risk-reduction outcomes

MEASURING IMPACT OF FIRE ON FOREST C

- Field based study sites
 - Forest type: dry sclerophyll;
 - •Similar fire history (unburnt > 15 years)
 - Mid /low elevation
 - Sites in SE Australia from Tasmania to Queensland

•Measurements of:

- Forest C pools pre/post fire
- •C and N concentration of different C pools
- Fireline intensity
- Burning efficiency of fuels
- Recovery of carbon

FOREST CARBON BY POOLS

Pool	Description	
Aboveground biomass (AGB)	Living biomass above the soil	
Deadwood	Coarse woody debris (CWD); standing dead trees and stumps	
Litter (or fine fuel)	Dead plant material such as fruits, leaves, flowers, and small branches (<2.5cm) on the forest floor	
Soil organic carbon	Organic carbon in soils to 30 cm depth	

Source: IPCC Land Use Land Use Change and Forestry 2004

MEASURING FOREST CARBON

f**íre** cac

SITES LOCATION

fire CRC

47 plots measured pre-fire 24 plots were burnt (+8 plots from SA expected)

SITES DIVERSITY

d=44 cm, height=22 m; 242 trees/ha; *E. obliqua* d=37 cm, height=21 m; 167 trees/ha; *E. obliqua*

d=37 cm, height=25 m; 145 trees/ha; *E. acmenoides*

SA

d=23 cm, height=12 m; 225 trees/ha; *E. obliqua* VIC, Otways VIC, Heyfield TAS

d=34 cm, height=10 m; 175 trees/ha; *E.amygdalina* QLD

ESTIMATING EMISSION AND FIRE INTENSITY

Emission _{j gas} = Fuel loads * Burning efficiency of fuel * Fuel C concentration * Fuel N concentration * Emission factor _{j gas}

(Australian Methodology for the Estimation of Greenhouse Gas Emissions and Sinks, 2006)

 \rightarrow Collaboration with Mick Meyer , CSIRO, to measure EF $_{\rm j\,gas}$ in the field

EMISSION FACTORS IMPROVED

ACKNOWLEDGEMENT

- DSE, Victoria
- •Tas. Parks and Wildlife Services

SUMMARY

- •We have developed a method to accurately estimate carbon loss in a forest with 90% probability
- •We know how to improve the estimates by increasing the sampling rate for variable of interest (e.g. coarse woody debris)
- •We are collaborating with CSIRO to derive new field-based measures of Emission Factors for fine and coarse fuels of SE Australia eucalypt forests
- •calibrate operational fuel load estimates with findings of this project → to get better estimates of emission → modify forest management